Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GT : ABCD là hình thang ( AB< CD)
MA = MD
MN//AB//DC
KL: CM: N,E,F lần lượt là trung điểm của BC, BD,AC
Giải:
Xét hình thang ABCD có :
MA=MD ( gt)
MN//AB//DC ( gt)
=> MN là đường trung bình của hình thang ABCD
=> NB=NC
=> N là trung điểm của BC
Xét tam giác ABD có :
MA=MD ( gt)
MN//AB (gt) hay ME//AB(vì ME thuộc MN)
=> ME là đường trung bình của tam giác ABD
=> EB=ED
=> E là trung điểm của BD
Xét tam giác ABC có:
NB= NC ( cmt)
MN//AB ( gt ) hay FN//AB ( vì FN thuộc MN )
=> NF là đường trung bình của tam giác ABC
=> NB=NC
=> N là trung điểm của BC
Trl:
a) Vì I thuộc đường trung trực của BC và AD(gt))
=> IB=IC và IA=ID (theo định lí đường trung trực).
Xét 2 ΔAIB và DIC có:
AI=DI(cmt)
AB=DC(gt)
IB=IC(cmt)
=> ΔAIB=ΔDIC(c−c−c).
b) Theo câu a) ta có ΔAIB=ΔDIC
=> BAIˆ=CDIˆ (2 góc tương ứng).
Xét ΔADIcó:
IA=ID(cmt)
=> ΔADI cân tại I.
=> ADIˆ=DAIˆ(tính chất tam giác cân).
Hay CDIˆ=CAIˆ.
Mà BAIˆ=CDIˆ(cmt)
=> BAIˆ=CAIˆ
=> AI là tia phân giác của BACˆ.
~Học tốt!~
Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)
Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)
Từ 1 và 2 => ED<FD
a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)
=> 62+Ac2=102 =>AC2=100-36=64=> AC= 8
Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)