Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1.5.6+2^3.1.5.6+4^3.1.5.6+9^3.1.5.6}{1.3.5+2^3.1.3.5+4^3.1.3.5+9^3.1.3.5}=\frac{1.5.6.\left(1+2^3+4^3+9^3\right)}{1.3.5.\left(1+2^3+4^3+9^3\right)}=2\)
\(\frac{1\cdot5\cdot6+2\cdot10\cdot12+4\cdot20\cdot24+9\cdot45\cdot54}{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20+9\cdot27\cdot45}=\frac{1\cdot5\cdot6\cdot\left(1+2+4+9\right)}{1\cdot3\cdot5\cdot\left(1+2+4+9\right)}=2\)
\(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)=\(\frac{1.5.6+\left(1.5.6\right)2+\left(1.5.6\right)4+\left(1.5.6\right)9}{1.3.5+\left(1.3.5\right)2+\left(1.3.5\right)4+\left(1.3.5\right)9}\)
=\(\frac{\left(1.5.6\right)\left(1+2+4+9\right)}{\left(1.3.5\right)+\left(1+2+4+9\right)}=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)
\(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}=\frac{1.5.6+\left(1.5.6\right)2+\left(1.5.6\right)4+\left(1.5.6\right)9}{1.3.5+\left(1.3.5\right)2+\left(1.3.5\right)4+\left(1.3.5\right)9}=\)
\(\frac{\left(1.5.6\right)\left(1+2+4+9\right)}{\left(1.3.5\right)\left(1+2+4+9\right)}=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)
\(A=\frac{1\cdot5\cdot6+2\cdot10\cdot12+4\cdot20\cdot24+9\cdot45\cdot54}{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20+9\cdot27\cdot45}\)
\(A=\frac{1\cdot5\cdot6\cdot\left(1+2+4+9\right)}{1\cdot3\cdot5\cdot\left(1+2+4+9\right)}\)
\(A=\frac{1\cdot5\cdot6}{1\cdot3\cdot5}\)
\(A=2\)
A=\(\frac{1.5.6+8\left(1.5.6\right)+64\left(1.5.6\right)+...+729\left(1.5.6\right)}{1.3.5+8\left(1.3.5\right)+64\left(1.3.5\right)+...+729\left(1.3.5\right)}\)
=\(\frac{\left(1.5.6\right)\left(1+8+64+...+729\right)}{\left(1.3.5\right)\left(1+8+64+...+729\right)}\)
=\(\frac{1.5.6}{1.3.5}\)
=2