K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021
Lấy 1 -1 2

a: \(A=5\cdot2\cdot\left(-3\right)-10+3\cdot\left(-3\right)=-30-10-9=-49\)

 b: \(B=8\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-2\cdot1-10\)

=8+1-2-10

=-3

30 tháng 3 2022

a: A=5⋅2⋅(−3)−10+3⋅(−3)=−30−10−9=−49

 b: B=8⋅1⋅(−1)2−1⋅(−1)−2⋅1−10

=8+1-2-10

=-3

\(=2.\left(-1\right)^2.2+4.\left(-1\right)^3.2^3+2.\left(-1\right).2^2\\ =4+\left(-32\right)+\left(-8\right)=\left(-36\right)\)

16 tháng 2 2022

Thay x=-1, y=2 vào B ta có:
\(B=2x^2y+4x^3y^3+2xy^2\\ =2.\left(-1\right)^2.2+4.\left(-1\right)^3.2^3+2.\left(-1\right).2^2\\ =4-32-8\\ =-36\)

12 tháng 6 2021

a. \(A+B=x^2-2x-y^2+3y-1-2x^2+3y^2-5x+y+3\)

\(=\left(x^2-2x^2\right)-\left(2x+5x\right)+\left(3y^2-y^2\right)+\left(3y+y\right)+\left(3-1\right)\)

\(=2y^2+4y-x^2-7x+2\)

Thay `x = 2` và `y = -1` vào `A + B` ta được:

\(2.\left(-1\right)^2+4.\left(-1\right)-2^2-7.2+2=-18\)

b. \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5x+y+3\right)\)

\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5x-y-3\)

\(=\left(x^2+2x^2\right)+\left(5x-2x\right)-\left(y^2+3y^2\right)+\left(3y-y\right)-\left(1+3\right)\)

\(=3x^2+3x-4y^2+2y-4\)

Thay `x = -2` và `y = 1` vào `A - B` ta được:

\(3.\left(-2\right)^2+3.\left(-2\right)-4.1^2+2.1^2-4=0\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Thay giá trị \(x =  - 1\) và \(y =  - 2\) vào các biểu thức đã cho, ta có:

\(A =  - ( - 4x + 3y) =  - ( - 4. - 1 + 3. - 2) =  - (4 +  - 6) =  - ( - 2) = 2\).

\(B = 4x + 3y = 4. - 1 + 3. - 2 =  - 4 +  - 6 =  - 10\).

\(C = 4x - 3y = 4.( - 1) - 3.( - 2) =  - 4 -  - 6 =  - 4 + 6 = 2\).

Ta thấy 2 ≠ -2 = 2. Do vậy, khi thay giá trị \(x =  - 1\) và \(y =  - 2\) vào các biểu thức đã cho ta thấy giá trị của các biểu thức A và C bằng nhau.

Vậy bạn Bình nói đúng.

7 tháng 5 2023

a/\(2\left|3x-1\right|+1=5\)
\(\Rightarrow2\left|3x-1\right|=4\)
\(\Rightarrow\left|3x-1\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=3\\3x=-1\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=1\)
Vậy x = 1
b/\(3^y+3^{y+2}=810\)
\(\Rightarrow3^y+3^y\cdot3^2=810\)
\(\Rightarrow3^y\left(1+3^2\right)=810\)
\(\Rightarrow3^y\cdot10=810\)
\(\Rightarrow3^y=81\)
\(\Rightarrow y=4\)
c/Thay x = -3, y = 4 vào M, ta có:
\(M=3\cdot\left(-3\right)^2-5\cdot4+1\)
\(=3\cdot9-20+1\)
\(=27-20+1\)
\(=8\)

7 tháng 5 2023

a)Ta có:

\(2\left|3x-1\right|+1=5\)

\(\Rightarrow2\left|3x-1\right|=4\)

\(\Rightarrow\left|3x-1\right|=2\)

\(\Rightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=3\\3x=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

b) Ta có:

\(3^y+3^{y+2}=810\)

\(\Rightarrow3^y\left(1+3^2\right)=810\)

\(\Rightarrow3^y.10=810\)

\(\Rightarrow3^y=81\)

\(\Rightarrow y=4\)

c) Thay \(x=-3;y=4\) ta được:

\(M=3\left(-3\right)^2-5.4+1=3.9-20+1=27-20+1=8\)

 

12 tháng 4 2022

a.\(x=0;y=-1\)

\(\Rightarrow2.0-\dfrac{-1\left(0^2-2\right)}{0.-1-1}=0-\dfrac{2}{-1}=2\)

b.\(x=2\)

\(\Rightarrow4.2^2-3\left|2\right|-2=16-6-2=8\)

\(x=-3\)

\(\Rightarrow4.\left(-3\right)^2-3\left|-3\right|-2=36-9-2=25\)

c.\(x=-\dfrac{1}{5};y=-\dfrac{3}{7}\)

\(\Rightarrow5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6=5.\dfrac{1}{25}+3+6=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)

12 tháng 4 2022

thay x=2 và biểu thức A ta đc

\(A=4.2^2-3.\left|2\right|-2=4.4-6-2=16-6-2=8\)

thay x=-3  biểu thức A ta đc

\(A=4.\left(-3\right)^2-3.\left|-3\right|-2=4.9-9-2=36-9-2=25\)

 

thay x=-1/5 ; y=-3/7  biểu thức B ta đc

\(B=5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6\)

\(B=5\cdot\dfrac{1}{25}+3+6\)

\(B=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)

 

Thay x=1 và y=-2 vào biểu thức \(A=\dfrac{1}{2}x^3y-2xy^2\), ta được:

\(A=\dfrac{1}{2}\cdot1^3\cdot\left(-2\right)-2\cdot1\cdot\left(-2\right)^2\)

\(=-1-2\cdot4\)

=-9

Vậy: Khi x=1 và y=-2 thì A=-9