Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3^-200=3^(-2x100)
2^-300=2^(-3x100)
=2^-300>3^-200
chúc bn học tốt
a, 3^(−200) và 2^(−300)
Ta có :
3^(−200) =(3^−2)^100=(1/9)^100
2^(−300) =(2^−3)^100=(1/8)^100
Do 1/9<1/8 nên 3^(−200) < 2^(−300)
b, 33^52 và 44^39
Ta có :
33^52 = ( 33^4)^13
44^39 = ( 44^3 )^13
33^4 = ( 33 4/3 )^3 = 106^3
106^3 > 44^3 ⇒ ( 33^4)^13 > ( 44^3 )^13 ⇒ 33^52 >44^39
#Học tốt#
A = 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/1.2
A = - (1/99.100 + 1/98.99 + 1/97.98 +... + 1/1.2)
A = - ( 1/99 - 1/100 + 1/98 - 1/99 + 1/97 - 1/98 +... + 1 - 1/2)
A = -(1 - 1/100)
A = -99/100
Trả lời:
Phân tích: (18.123+9.436.2−3.3510.6)=18.123+18.436−18.5310(18.123+9.436.2−3.3510.6)=18.123+18.436−18.5310⇔18.(123+436−3510)⇔18.(123+436−3510)( chung số 18 )
⇔18.(−4751)=−85518⇔18.(−4751)=−85518
Tiếp tục phân tích vế sau:
(1+4+7+...+100−410)=[(100−1):3+1].(100+1)2−410(1+4+7+...+100−410)=[(100−1):3+1].(100+1)2−410⇔1717−410=1307⇔1717−410=1307
⇔−85518:1717=−855181717⇔−85518:1717=−855181717
Vậy (18.123 + 9.436.2 + 3.5310.6 ) : ( 1 + 4 + 7 + ....... + 100 - 410 )=−855181717
~Học tốt!~
Bài 1:
\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)
\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)
Bài 2:
\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)
<=> \(\frac{7}{8}-x=\frac{27}{40}\)
<=> \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)
Vậy...
Sửa đề :
\(A=\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2004}}\)
\(2A-A=\left(1+2+\frac{1}{2}+...+\frac{1}{2^{2004}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2005}}\right)\)
\(A=2-\frac{1}{2^{2005}}\)
Ta có : \(C=\frac{1}{2}+\left(-\frac{2}{3}\right)+\left(-\frac{2}{3}\right)^2+\left(-\frac{2}{3}\right)^3+......+\left(-\frac{2}{3}\right)^{2018}\)
\(\Rightarrow C=\frac{1}{2}-\left(\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+.....+\left(\frac{2}{3}\right)^{2018}\right)\)
Đặt \(\Rightarrow A=\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+.....+\left(\frac{2}{3}\right)^{2018}\)
\(\Rightarrow\frac{2}{3}A=\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+\left(\frac{2}{3}\right)^4+.....+\left(\frac{2}{3}\right)^{2019}\)
\(\Rightarrow A-\frac{2}{3}A=\frac{2}{3}-\frac{2}{3}^{2019}\)
\(\Rightarrow\frac{1}{3}A=\frac{2}{3}-\left(\frac{2}{3}\right)^{2019}\)
=> A = \(\left(\frac{2}{3}-\left(\frac{2}{3}\right)^{2019}\right).3\)
=> A = 2 - \(\frac{2^{2019}}{3^{2018}}\)
Ở bên trên, mình viết nhầm, đề bài là:
Cho P(x)=x^99-100x98+100x97-100x^96+...+100x-1. Tính P(99)
Mong mọi người giúp đỡ
\(A=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^4}=\frac{2^{30}+2^{20}}{2^{12}+2^8}=\frac{2^{20}\left(2^{10}+1\right)}{2^8\left(2^4+1\right)}=\frac{2^{12}\left(2^{10}+1\right)}{2^4+1}\)