Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
1/ có \(xy=5\Rightarrow x,y\inƯ\left(5\right)=\left\{1,5\right\}\)
mà \(x>y\) \(\Rightarrow x=5,y=1\)
2/ \(\left(x+1\right)\left(y+2\right)=5\) \(\Rightarrow x+1,y+2\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow\orbr{\begin{cases}x+1=5,y+2=1\Rightarrow x=4,y=-1\left(loai\right)\\x+1=1,y+2=5\Rightarrow x=0,y=3\left(tm\right)\end{cases}}\)
vậy x=0, y=3
3/ \(\left(x+1\right)\left(y+2\right)=6\) \(\Rightarrow x+1,y+2\inƯ\left(6\right)=\left\{1,2,3,6\right\}\)
=>
x+1 | 1 | 2 | 3 | 6 |
x | 0 | 1 | 2 | 5 |
y+2 | 6 | 3 | 2 | 1 |
y | 4 | 1 | 0 | -1(loại) |
vậy có 3 kết quả như bảng trên
Bài 2:
\(\Leftrightarrow n^2-1+4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
\(2^{x+1}.3^y=48\)
\(2^{x+1}.3^y=2^4.3\)
\(\Rightarrow\hept{\begin{cases}x+1=4\\y=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)