Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-3)(y+5)=17
Ta có bảng:
x-3 | 1 | 17 | -1 | -17 |
y+5 | 17 | 1 | -17 | -1 |
x | 4 | 20 | 2 | -14 |
y | 12 | -4 | -22 | -6 |
Vậy............
Lập bảng tương tự các câu còn lại
Câu a mik bt r nha bn, bn giải các câu còn lại nha, nhưng phải giải chi tiết, giải như vậy, mik ko hiểu
Lời giải:
$3xy+x-y=9$
$x(3y+1)-y=9$
$3x(3y+1)-3y=27$
$3x(3y+1)-(3y+1)=26$
$(3x-1)(3y+1)=26$. Do $3x-1, 3y+1$ đều là số nguyên với mọi $x,y$ nguyên nên ta có bảng sau:
3x-1 | 1 | 26 | -1 | -26 | 2 | 13 | -2 | -13 |
3y+1 | 26 | 1 | -26 | -1 | 13 | 2 | -13 | -2 |
x | 2/3 | 9 | 0 | -25/3 | 1 | 14/3 | -1/3 | -4 |
y | 25/3 | 0 | -9 | -2/3 | 4 | 1/3 | -14/3 | -1 |
Kết luận | loại | chọn | chọn | loại | chọn | loại | loại | chọn |
\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=2019\)
Mà \(x-y+y-z+z-t+t-x=0\)
\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-x\right|+t-x=2019\)
Ta có:Với \(a=0\Rightarrow\left|a\right|+a=0+0=0⋮2\)
Với \(a>0\Rightarrow\left|a\right|+a=2a⋮2\)
Với \(a< 0\Rightarrow\left|a\right|+a=0⋮2\)
Áp dụng vào bài toán ta được \(VT⋮2\Rightarrow VP⋮2\Rightarrow2019⋮2\left(L\right)\)
\(\Rightarrow PT\) vô nghiệm.
P/S:\(L\) là loại nhé!
a,A=|x-7|+12
Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)
Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7
Vậy GTNN của A là 12 khi x = 7
b,B=|x+12|+|y-1|+4
Vì \(\left|x+12\right|\ge0\forall x\)
\(\left|y-1\right|\ge0\forall y\)
nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)
Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)
Vậy GTNN của B là 4 khi x = -12 và y = 1