Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tìm x
a) |3x - 1| + |1 - 3x| = 6
<=> |3x - 1| + |3x - 1| = 6
<=> 2|3x - 1| = 6
=> |3x - 1| = 3
=> \(\orbr{\begin{cases}3x-1=3\\3x-1=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{2}{3}\end{cases}}}\)
b) |2x - 1| + |1 - 2x| = 8
<=> |2x - 1| + |2x - 1| = 8
<=> 2|2x - 1| = 8
=> |2x - 1| = 4
=> \(\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}}\)
=>(1+2+3+......+2016).x=4070306
=>2033136.x=4070306
=>x=4070306:2033136
=>x=\(\frac{1009}{504}\)
\(M=\frac{2016x-2016}{3x+2}=\frac{3x+2013x+2-2018}{3x+2}=\frac{3x+2+2013x-2018}{3x+2}=1+\frac{2013x-2018}{3x+2}\)
de min A thi 3x + 2 nho nhat
<=> 3x + 2 = -1
<=> 3x = -3
<=> x = -1
vay_
\(M=\frac{2016x-2016}{3x+2}=672-\frac{3360}{3x+2}\)
Để M nhỏ nhất thì \(\frac{3360}{3x+2}\)lớn nhất
Hay 3x + 2 là số dương nhỏ nhất vì x nguyên
\(\Rightarrow3x+2\ge1\)
\(\Rightarrow x\ge-\frac{1}{3}=-0,333\)
Vì x nguyên nên x = 0 là giá trị cần tìm
\(M=\frac{2016x-2016}{3x+2}\)
\(=672-\frac{1344}{3x+2}\)
để M nhỏ nhất => \(\frac{1344}{3x+2}\)phải lớn nhất với x thuộc số nguyên
\(\Leftrightarrow3x+2\)nhỏ nhất >0
\(\Leftrightarrow x=1\)
\(M=\frac{2016x+1344}{3x+2}-\frac{3360}{3x+2}=672-\frac{3360}{3x+2}\)
M nhỏ nhất => \(\frac{3360}{3x+2}\) lớn nhất => \(3x+2\) nguyên dương và nhỏ nhất => \(3x+2=1\) => \(x=\frac{-1}{3}\)
Vậy GTNN của \(M=-2688\) khi \(x=\frac{-1}{3}\)
1) \(A=5.\left|x-5\right|-3x+1\)
\(A=\left[{}\begin{matrix}5.\left(x-5\right)-3x+1\left(x-5\ge0\right)\\5.\left(5-x\right)-3x+1\left(x-5< 0\right)\end{matrix}\right.\)
\(A=\left[{}\begin{matrix}5x-25-3x+1\left(x\ge5\right)\\25-5x-3x+1\left(x< 5\right)\end{matrix}\right.\)
\(A=\left[{}\begin{matrix}2x-24\left(x\ge5\right)\\26-8x\left(x< 5\right)\end{matrix}\right.\)
3:
\(Q=\dfrac{27-2x}{12-x}=\dfrac{2x-27}{x-12}\)
\(\Leftrightarrow Q=\dfrac{2x-24-3}{x-12}=2-\dfrac{3}{x-12}\)
Để Q lớn nhất thì \(2-\dfrac{3}{x-12}\) lớn nhất
=>\(\dfrac{3}{x-12}\) nhỏ nhất
=>x-12 là số nguyên âm lớn nhất
=>x-12=-1
=>x=11
Vậy: \(Q_{min}=2-\dfrac{3}{11-12}=2+3=5\) khi x=11
Bài 2:
a: \(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(15-xy=\dfrac{x}{2}\)
=>\(30-2xy=x\)
=>x+2xy=30
=>x(2y+1)=30
mà x,y nguyên
nên \(\left(x;2y+1\right)\in\left\{\left(30;1\right);\left(-30;-1\right);\left(2;15\right);\left(-2;-15\right);\left(10;3\right);\left(-10;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(30;0\right);\left(-30;-1\right);\left(2;7\right);\left(-2;-8\right);\left(10;1\right);\left(-10;-2\right)\right\}\)
b: \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
=>\(\dfrac{20+xy}{4x}=\dfrac{1}{8}\)
=>\(\dfrac{40+2xy}{8x}=\dfrac{x}{8x}\)
=>40+2xy=x
=>x-2xy=40
=>x(1-2y)=40
mà x,y nguyên
nên \(\left(x;1-2y\right)\in\left\{\left(40;1\right);\left(-40;-1\right);\left(8;5\right);\left(-8;-5\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(40;0\right);\left(-40;1\right);\left(8;-2\right);\left(-8;3\right)\right\}\)
Bài 2:
\(A=\dfrac{2016-x}{6-x}=\dfrac{2010+6-x}{6-x}=\dfrac{2010}{6-x}+\dfrac{6-x}{6-x}=1+\dfrac{2010}{6-x}\)
\(A\) đạt \(Max\) khi và chỉ khi \(6-x\) lớn nhất
*)Nếu \(x>6\Rightarrow6-x< 0\Rightarrow\dfrac{2010}{6-x}< 0\)
*)Nếu \(x< 6\Rightarrow6-x>0\Rightarrow\dfrac{2010}{6-x}>0\)
Nên \(\dfrac{2010}{6-x}\) lớn nhất khi \(6-x\) là số nguyên dương nhỏ nhất
\(\Rightarrow6-x=1\Rightarrow x=5\). Khi đó
\(A=1+\dfrac{2010}{6-5}=1+\dfrac{2010}{1}=1+2010=2011\)
Vậy \(A_{Max}=2011\) khi \(x=5\)
1/ Ta có: \(x+2x+3x+...=2016x=2017.2018\)
\(\Rightarrow2016x=4070306\)
\(\Rightarrow x=\dfrac{4070306}{2016}\)
Vậy \(x=\dfrac{4070306}{2016}\).