K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2018

1, Tìm x biết: a, 6x 1-6x=1080

b, 6x-1 6x=42 2, So sánh: E=7.(8 82 83 ....... 8100) 8 và G=8101 3, Chứng tỏ: a, 4343-1717 chia hết cho 10 b, 3636-910 chia hết cho 45

c, 2 10 2 11 2 12 7 210 211 2127 có giá trị là số tự nhiên

d, 8 10 − 8 9 − 8 8 55 810−89−8855 có giá trị là số tự nhiên

hi haha

Bài 1: 

a: \(\Leftrightarrow6^x\left(6-1\right)=1080\)

=>6x=216

=>x=3

b: \(\Leftrightarrow6^x\left(\dfrac{1}{6}+1\right)=42\)

=>6x=36

=>x=2

Câu 3:

c: \(=\dfrac{2^{10}\left(1+2+2^2\right)}{7}=2^{10}\) là số tự nhiên

d: \(=\dfrac{8^8\left(8^2-8-1\right)}{55}=8^8\) là số tự nhiên

23 tháng 6 2017

a) Vì \(45=BCNN\left(5,9\right);ƯCLN\left(5,9\right)=1\)

Ta có :

\(36^{36}-9^{10}⋮9\) \(\left(1\right)\)

Mặt khác :

\(36^{36}=\left(......6\right)\)

\(9^{10}=\left(9^2\right)^5=81^5=\left(.......1\right)\)

Từ \(\Rightarrow36^{36}-9^{10}=\left(.....6\right)-\left(...1\right)=\left(.....5\right)⋮5\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Rightarrow36^{36}-9^{10}⋮45\rightarrowđpcm\)

b) Ta có :

\(7^{1000}=\left(7^2\right)^{500}=49^{500}\)

\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)

Ta có lũy thừa tận cùng là 9 khi nâng lên lũy thừa bặc lũy thừa chẵn chữ số tận cùng sẽ là 1

\(\Rightarrow\left\{{}\begin{matrix}49^{500}=\left(....1\right)\\9^{500}=\left(....1\right)\end{matrix}\right.\)

\(\Rightarrow7^{1000}-3^{1000}=\left(.....1\right)-\left(...1\right)=\left(...0\right)⋮10\)

Vậy \(7^{1000}-3^{1000}⋮10\rightarrowđpcm\)

25 tháng 8 2016

a/ 8^7-2^18=1835008 chia hết cho 14=131072                            

b/10^6-5^7=921875 chia hết cho 59=15625

7^6+7^5-7^4=132055  hết cho 55=2401

10 tháng 9 2016

a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14

14 chia hết cho 14 => ĐPCM

b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59

59 chia hết 59 => ĐPCM

c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55

55 cha hết 5 => ĐPCM

d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33

33 chia hết 33 => ĐPCM

e và f chịu

g thì tính chữ số tận cùn của tổng đó

h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7

7 chia hết cho 7 => nó là 1 số tự nhiên

i chịu

20 tháng 8 2018

a)

\(7^6+7^5-7^4\)

\(=7^4\cdot\left(7^2+7-1\right)\)

\(=7^4\cdot55⋮55\left(đpcm\right)\)

Mấy câu kia tương tự, dài quá 

20 tháng 3 2020

Xem cách làm câu (b);(c);(d)
Bạn tham khảo:

Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath

5 tháng 2 2022

các bạn giúp mik nha

Cho A bằng 5^2021+1 phần 5^2022+1  ;  B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B