K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

\(\dfrac{A}{B}=\dfrac{4x^{n+1}y^2}{3x^3y^{n-1}}=\dfrac{4}{3}x^{n-2}y^{2-n+1}=\dfrac{4}{3}x^{n-2}y^{3-n}\)

Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-2>=0\\3-n>=0\end{matrix}\right.\Leftrightarrow2\le n\le3\)

Bài 2: 

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)\left(x-y\right)+3\left(x+y\right)^2}{x+y}\)

\(=x^2-xy+y^2-2\left(x-y\right)+3\left(x+y\right)\)

\(=x^2-xy+y^2-2x+2y+3x+3y\)

\(=x^2-xy+y^2+x+5y\)

12 tháng 7 2017

a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24\)

\(=24-11x\)

b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)

\(=8x^2y-6y^2-9x^2y+12y^2\)

\(=6y^2-x^2y\)

c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)

\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)

\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)

\(=4y^3+y^2+6xy^2\)

b: Ta có: \(\left(4x-y\right)\left(4x+y\right)-2\left(3x-2y\right)^2+\left(x-3y\right)^2\)

\(=16x^2-y^2-2\left(9x^2-12xy+4y^2\right)+x^2-6xy+9y^2\)

\(=17x^2-6xy+8y^2-18x^2+24xy-8y^2\)

\(=-x^2+18xy\)

c: Ta có: \(\left(2a-3b+4c\right)\left(2a-3b-4c\right)\)

\(=\left(2a-3b\right)^2-16c^2\)

\(=4a^2-12ab+9b^2-16c^2\)

17 tháng 8 2018

\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)

\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)

\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x

17 tháng 8 2018

3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2

Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)

Tương tự ta có b^2-a^2=n

Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn

Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1

Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)

Từ (1) và (2)=> n chia hết cho 40

                 

25 tháng 2 2021

`a,(25xy^3(2x-y)^2)/(75xy^2(y-2x))(x,y ne 0)(y ne 2x)`

`=(25xy^3(y-2x)^2)/(75xy^2(y-2x))`

`=(y(y-2x))/3`

`b,(x^2-y^2)/(x^2-y^2+xz-yz)`

`=((x-y)(x+y))/((x-y)(x+y)+z(x-y))`

`=(x+y)/(x+y+z)`

`c,((2x+3)-x^2)/(x^2-1)(x ne +-1)`

`=(-(x^2-3x+x-3))/((x-1)(x+1))`

`=(-x(x-3)+x-3)/((x-1)(x+1))`

`=((x-3)(1-x))/((x-1)(x+1))`

`=(3-x)/(1+x)`

`d,(3x^3-7x^2+5x-1)/(2x^3-x^2-4x+3)`

`=(3x^3-3x^2-4x^2+4x+x-1)/(2x^3-2x^2+x^2-x-3x+3)`

`=(3x^2(x-1)-4x(x-1)+x-1)/(2x^2(x-1)+x(x-1)-3(x-1))`

`=(3x^2-4x+1)/(2x^2+x-3)`

`=(3x^2-3x-x+1)/(2x^2-2x+3x-3)`

`=(3x(x-1)-(x-1))/(2x(x-1)+3(x-1))`

`=(3x-1)/(2x+3)`

a) Ta có: \(\dfrac{25xy^3\cdot\left(2x-y\right)^2}{75xy^2\cdot\left(y-2x\right)}\)

\(=\dfrac{25xy^2\cdot y\cdot\left(y-2x\right)^2}{25xy\cdot y\cdot\left(y-2x\right)\cdot3}\)

\(=\dfrac{y\left(y-2x\right)}{3}\)

 

20 tháng 4 2017

a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)

= x3 + 33 - (54 + x3)

= x3 + 27 - 54 - x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]

= [(2x)3 + y3]- [(2x)3 - y3]


= (2x)3 + y3- (2x)3 + y3= 2y3

20 tháng 4 2017

Bài giải:

a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)

= x3 + 33 - (54 + x3)

= x3 + 27 - 54 - x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]

= [(2x)3 + y3]- [(2x)3 - y3]

= (2x)3 + y3- (2x)3 + y3= 2y3