Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (2x+1)^2 lớn hơn hoặc bằng 0 suy ra (2x+1)^2+4 lớn hơn hoặc bằng 0 suy ra căn (2x+1)+4 lớn hơn hoặc bằng 0
Lại có:|4y^2-1|lớn hơn hoặc bằng 0 suy ra 3.|4y^2-1| lớn hơn hoặc bằng 0
nên GTNN của A =5 khi và chỉ khi (2x+1)^2+4=0 và 4y^2-1=0
Với (2x-1)^2-4=0 suy ra (2x+1)^2=-4 suy ra 2x+2= -2 hoặc 2. Nếu 2x+1=-2 suy ra x=-3/2; nếu 2x+1=2 thì x=1/2
Với 4y^2-1=0 suy ra 4y^2=1 suy ra y^2=1/4 suy ra y=1/2 và y=-1/2
giá trị nhỏ nhất là 10 đạt đc khi x = 0,5 và y = 0
g
\(\left|x+1,5\right|\ge0\forall x\)
Dấu " = " xảy ra khi
| x + 1,5 | = 0
x = -1,5
Vậy MinA = 0 <=> x = -1,5
b)
\(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|-\frac{9}{10}\ge\frac{9}{10}\forall x\)
Dấu " = " xảy ra khi
| x - 2 | = 0
x = 2
Vậy MinA = \(\frac{9}{10}\)<=> x = 2
\(-\left|2x-1\right|\le0\forall x\)
Dấu " = " xảy ra khi :
- | 2x - 1 | = 0
=> x = \(\frac{1}{2}\)
Vậy MaxA = 0 <=> x = \(\frac{1}{2}\)
b)
\(-\left|5x-3\right|\le0\forall x\Rightarrow4-\left|5x-3\right|\le4\)
Dấu " = " xảy ra khi :
- | 5x - 3 | = 0
=> x = \(\frac{3}{5}\)
Vậy MaxB = 4 <=> x = \(\frac{3}{5}\)
Study well
Bằng 4 nhé bạn! Bạn thi violympic đúng không? Mình cũng thi. Bạn được mấy?
a) \(A=2x^2+1\)
Vì \(x^2\ge0\)\(\forall x\)\(\Rightarrow2x^2\ge0\)\(\forall x\)
\(\Rightarrow2x^2+1\ge1\)\(\forall x\)
hay \(A\ge1\)
Dấu " = " xảy ra \(\Leftrightarrow x=0\)
Vậy \(minA=1\)\(\Leftrightarrow x=0\)
b) \(B=-3x^2-1\)
Vì \(x^2\ge0\forall x\)\(\Rightarrow-3x^2\le0\forall x\)
\(\Rightarrow-3x^2-1\le-1\forall x\)
hay \(B\le-1\)
Dấu " = " xảy ra \(\Leftrightarrow x=0\)
Vậy \(maxB=-1\Leftrightarrow x=0\)
c) Ta có: \(C=\left|-3x^2\right|\ge0\)( tính chất của dấu giá trị tuyệt đối )
Dấu " = " xảy ra \(\Leftrightarrow-3x^2=0\)\(\Leftrightarrow x=0\)
Vậy \(minC=0\Leftrightarrow x=0\)