Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\cos^2\alpha=\dfrac{16}{25}\)
hay \(\cos\alpha=\dfrac{4}{5}\)
Ta có: \(A=5\cdot\sin^2\alpha+6\cdot\cos^2\alpha\)
\(=5\cdot\left(\dfrac{3}{5}\right)^2+6\cdot\left(\dfrac{4}{5}\right)^2\)
\(=5\cdot\dfrac{9}{25}+6\cdot\dfrac{16}{25}\)
\(=\dfrac{141}{25}\)
c) Ta có: \(\tan\alpha=\dfrac{1}{\cot\alpha}=\dfrac{1}{\dfrac{4}{3}}=\dfrac{3}{4}\)
\(D=\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
\(=\dfrac{\dfrac{9}{16}+\dfrac{16}{9}}{\dfrac{9}{16}-\dfrac{16}{9}}=-\dfrac{337}{175}\)
a) khai triển được 2sin2+2cos2=2(sin2+cos2=2.1=2
b)cot2-cos2.cot2=cot2(1-cos2)=cot2.sin2=cos2/sin2.sin2=cos2
c)sin.cos(tan+cot)=sin.cos.tan+sin.cos.cot=sin.cos.sin/cos+sin.cos.cos/sin=sin2+cos2=1
d)tan2-tan2.sin2=tan2(1-sin2)=tan2.cos2=sin2/cos2.cos2=sin2
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)
\(=cos^2a\left(\frac{cos^2a}{sin^2a}\right)=cos^2a.cot^2a\)
\(\frac{1+cosa}{sina}=\frac{sina\left(1+cosa\right)}{sin^2a}=\frac{sina\left(1+cosa\right)}{1-cos^2a}=\frac{sina\left(1+cosa\right)}{\left(1-cosa\right)\left(1+cosa\right)}=\frac{sina}{1-cosa}\)