K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Ta có:

x+y=4 và x2+y2=10

=>x;y khác 0

vì x+y=4

=> x và y đều chẵn hoặc x và y đều lẻ

TH1: x chẵn; y chẵn 

thì => x và y chỉ có thể =2 

Ta có: 22+22=4+4=8(ko thỏa mãn)

TH2: x và y đều lẻ=> x và y E { 1;3};{ 3;1}

32+12=9+1=10(thỏa mãn)

Ngược lại cũng thỏa mãn

=> x3+y3=33+13

hay y3+x3=33+13

Các phép tính trên đều = 33+13=27+1=28

=> x3+y3 hay y3+x3 đều = 28

28 tháng 10 2018

(x+y)2=4

x2+y2+2xy=4

10+2xy=4

2xy=6

xy=3

Do đó x3+y3=(x+y).(x2+y2xy)=2.[10(3)]=2.13=26

học tốt nha Đúng 0  Sai 0 
6 tháng 8 2018

a/ 

\(\left(5xy^2-11x^3y+6x^2y^2\right)\div x^2y\)

\(=xy\left(5y-11x^2+6xy\right)\div x^2y\)

\(=\left(5y-11x^2+6xy\right)\div x\)

\(=\frac{5y}{x}-\frac{11x^2}{x}+\frac{6xy}{x}\)

\(=\frac{5y}{x}-11x+6y\)

b/ \(\left[\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3\right]\div\left[-5\left(x+y\right)^3\right]\)

\(=\left(x+y\right)^3\left[\left(x+y\right)^2-2\left(x+y\right)+3\right]\div\left[-5\left(x+y\right)^3\right]\)

\(=\frac{\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)

6 tháng 8 2018

Có gửi card không bạn ơi?

5 tháng 8 2018

\(\left(5xy^2-11x^3y+6x^2y^2\right):xy\)

\(=\left(5xy^2:xy\right)-\left(11x^3y:xy\right)+\left(6x^2y^2:xy\right)\)

\(=5y-11x^2+6xy\)

a: \(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}\)

\(=\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(x-y\right)^2}\)

\(=3\left(x-y\right)^2+2\left(x-y\right)-5\)

b: \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}\)

\(=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}\)

=x-2y

c: \(\dfrac{x^3+y^3}{x+y}\)

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}\)

\(=x^2-xy+y^2\)

19 tháng 8 2016

Ta có: |x+1|>=0 với mọi x

           |y+2|>=0 với mọi y

           |x-y+z|>=0 với mọi x,y,z

=>|x+1|+|y+2|+|x-y+z|>=0+0+0 với mọi x,y,z

Mà |x+1|+|y+2|+|x-y+z|=0

=>|x+1|=|y+2|=|x-y+z|=0

=>x+1=y+2=x-y+z=0

=>x=-1 và y=-2 và -1-(-2)+z=0

=>x=-1,y=-2 và z=-1

8 tháng 11 2018

\(\left(x-1\right)^2\ge0\Rightarrow x^2-2x+1\ge0\Rightarrow x^2+1\ge2x\)

\(\left(y-2\right)^2\ge0\Rightarrow y^2-4y+4\ge0\Rightarrow y^2+4\ge4y\)

\(\left(z-3\right)^2\ge0\Rightarrow z^2-6z+9\ge0\Rightarrow z^2+9\ge6z\)

Do đó: \(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x.4y.6z=48xyz\)

Dấu "=" xảy ra khI: \(\hept{\begin{cases}x-1=0\\y-2=0\\z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)

Vậy \(C=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^3}=\frac{6^2}{6^3}=\frac{1}{6}\)

Chúc bạn học tốt.