Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(A< \frac{1}{100\cdot101}+\frac{1}{101\cdot102}+\frac{1}{102\cdot103}+\frac{1}{103\cdot104}+\frac{1}{104\cdot105}\)
\(=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{2^2\cdot3\cdot5^2\cdot7}=B\)
Vậy \(A< B\)
a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)
\(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được :
\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)
\(\Leftrightarrow50+10y-12y-24y-152=80\)
\(\Leftrightarrow-26y=182\Rightarrow y=-7\)
Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)
Vậy ....
b) Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+3y+1+5y+1+7y}{12+5x+4x}=\frac{3+15y}{12+5x+4x}=\frac{3\left(1+5y\right)}{2.3.2+5x+4x}=\frac{1+5y}{4+9x}=\frac{1+5y}{5x}\)<=> 4 + 9x = 5x
....
a/ Từ giả thiêt ta có \(\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}\Leftrightarrow\frac{x}{15}-\frac{3}{5}=\frac{y}{20}-\frac{3}{5}=\frac{z}{40}-\frac{3}{5}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{40}\). Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{40}=k\)
\(\Rightarrow\begin{cases}x=15k\\y=20k\\z=40k\end{cases}\)
Theo đề bài : \(xy=1200\Leftrightarrow15k.20k=1200\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)
Tới đây dễ rồi nhé :)
b/ \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\Leftrightarrow\frac{1+5y}{5}=\frac{1+7y}{4}\Leftrightarrow\frac{7+35y}{35}=\frac{5+35y}{20}=\frac{7+35y-5-35y}{35-20}=\frac{2}{15}\)
\(\Rightarrow y=-\frac{1}{15}\)
Thay y vào \(\frac{1+3y}{12}=\frac{1+5y}{5x}\) tìm được x = 2
ta có: 2xx=3y=>x/3=y/2=>x/21=y/14 ; x/7=z/5=>x/21=z/15 =>x/21=y/14=z/15=>3x/63=7y/98=5z/75 ADTCDTSBN ta có 3x/63=7y/98=5z /75=3x-7y+5z=40/63-98+75=40=1 3x=1.63=63 =>x=21 ;7y=1.98=98=>y=14 ; 5z=1.75=>z=15
\(B=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}<\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{103.104}\)
Tính VP ra là được
2/
a) Ta có x : 2 = y : 5
=> \(\frac{x}{2}=\frac{y}{5}\) và \(x+y=21\).
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=3=>x=3.2=6\\\frac{y}{5}=3=>y=3.5=15\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;15\right)\).
Chúc bạn học tốt!