Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(P_1>0,P_2< 0,P_3=0\) (Vì có thừa số \(\dfrac{0}{11}=0\))
Do đó \(P_2< P_3< P_1\)
a) \(=\left(13\dfrac{2}{7}+2\dfrac{5}{7}\right):\left(-\dfrac{8}{9}\right)\)
\(=16:\dfrac{-8}{9}=\dfrac{-8\cdot\left(-2\right)\cdot9}{-8}=-18\)
b)
\(=\left(\dfrac{-6}{11}\cdot\dfrac{11}{-6}\right)\cdot\dfrac{7\cdot10\cdot\left(-2\right)}{10}\)
\(=-14\)
c) \(=\dfrac{-1}{2}\cdot\dfrac{4}{3}\cdot\dfrac{-7}{2}\)
\(=\dfrac{-1\cdot2\cdot2\cdot\left(-7\right)}{2\cdot3\cdot2}=\dfrac{7}{3}\)
\(a.\left[-\dfrac{6}{11}.\dfrac{11}{-6}\right].\dfrac{7}{10}.\left(-20\right)=1.7.\left(-2\right)=-14\)
\(b.\dfrac{-1}{2}:\dfrac{3}{4}.\dfrac{-7}{2}=\dfrac{7}{4}:\dfrac{3}{4}=\dfrac{7}{3}\)
\(c.\dfrac{93}{7}:-\dfrac{8}{9}+\dfrac{19}{7}:\dfrac{-8}{9}=\left(\dfrac{93}{7}+\dfrac{19}{7}\right):-\dfrac{8}{9}=\dfrac{-9}{8}.\dfrac{112}{7}=-18\)
bài1
a) \(\dfrac{7}{6}-\dfrac{13}{12}+\dfrac{3}{4}\)
=\(\dfrac{14}{12}-\dfrac{13}{12}+\dfrac{9}{12}\)
=\(\dfrac{1}{12}+\dfrac{9}{12}\)
=\(\dfrac{10}{12}=\dfrac{5}{6}\)
bài 1
b)\(1\dfrac{1}{2}.(\dfrac{-4}{5})\) + \(\dfrac{3}{10}\)
= \(\dfrac{3}{2}.\left(-\dfrac{4}{5}\right)+\dfrac{3}{10}\)
= \(-\dfrac{6}{5}+\dfrac{3}{10}\)
=\(-\dfrac{12}{10}+\dfrac{3}{10}\)
=\(-\dfrac{9}{10}\)
\(E=\dfrac{\left(\dfrac{53}{4}-\dfrac{59}{27}-\dfrac{65}{6}\right).\dfrac{5751}{25}+\dfrac{187}{4}}{\left(\dfrac{10}{7}+\dfrac{10}{3}\right):\left(\dfrac{37}{3}-\dfrac{100}{7}\right)}\)
\(=\dfrac{\dfrac{25}{108}.\dfrac{5751}{25}+\dfrac{187}{4}}{\dfrac{100}{21}:\left(\dfrac{-44}{21}\right)}\)
\(=\dfrac{53,25+\dfrac{187}{4}}{\dfrac{-25}{11}}\)
\(=\dfrac{100}{\dfrac{-25}{11}}\)
\(=-44\)
a. \(A=\dfrac{0,75-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{2,75-2,2+\dfrac{11}{7}+\dfrac{11}{13}}=\dfrac{3\left(0,25-0,2+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(0,25-0,2+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)
Vậy \(A=\dfrac{3}{11}\)
b. \(B=\dfrac{2^{12}\cdot13+2^{12}\cdot65}{2^{10}\cdot104}+\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\dfrac{2^{12}\left(13+65\right)}{2^{10}\cdot104}+\dfrac{3^{10}\left(11+5\right)}{3^9\cdot2^4}=\dfrac{2^{12}\cdot78}{2^{10}\cdot104}+\dfrac{3^{10}\cdot16}{3^9\cdot16}=\dfrac{2^2\cdot3}{1\cdot4}+3=\dfrac{12}{4}+3=3+3=6\)
Vậy \(B=6\)
P1>P3>P2