Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(2=1+1=1+\sqrt{1}\)
Mà: \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\)
\(\Rightarrow1+\sqrt{1}< \sqrt{2}+1\)
\(\Rightarrow2< \sqrt{2}+1\)
b) Ta có:
\(1=2-1=\sqrt{4}-1\)
Mà: \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\sqrt{4}-1>\sqrt{3}-1\)
\(\Rightarrow1>\sqrt{3}-1\)
c) Ta có:
\(10=2\cdot5=2\sqrt{25}\)
Mà: \(25< 31\Rightarrow\sqrt{25}< \sqrt{31}\)
\(\Rightarrow2\sqrt{25}< 2\sqrt{31}\)
\(\Rightarrow10< 2\sqrt{31}\)
d) Ta có:
\(-12=-3\cdot4=-3\sqrt{16}\)
Mà: \(16>11\Rightarrow\sqrt{16}>\sqrt{11}\)
\(\Rightarrow-3\sqrt{16}< -3\sqrt{11}\)
\(\Rightarrow-12< -3\sqrt{11}\)
Ta có: \(xyz\le\left(\frac{x+y+z}{3}\right)^3=\frac{1}{27}\) và \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\left(\frac{x+y+y+z+z+x}{3}\right)^3=\frac{8}{27}\)
\(\Rightarrow B\le\frac{1}{27}.\frac{8}{27}=\frac{8}{729}\Rightarrow k=\frac{8}{729}\Rightarrow9^3.k=8\)
Đề bài mình sửa lại : A = a2021 - b2021 + c2021 - (a - b + c)2021
Ta có \(\sqrt{a}-\sqrt{b}+\sqrt{c}=\sqrt{a-b+c}\)
\(\Leftrightarrow a+b+c-2\sqrt{ab}-2\sqrt{bc}+2\sqrt{ca}=a-b+c\)
\(\Leftrightarrow b-\sqrt{ab}-\sqrt{bc}+\sqrt{ca}=0\)
\(\Leftrightarrow\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)-\sqrt{c}\left(\sqrt{b}-\sqrt{a}\right)=0\)
\(\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right).\left(\sqrt{b}-\sqrt{a}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=c\\b=a\end{matrix}\right.\)
Với b = c
A = a2021 - b2021 + c2021 - (a - b + c)2021
= a2021 - a2021
= 0
Tương tự với b = a ta được A = 0
Vậy A = 0
a,b,c) đều <