Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
\(a.\)
\(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)
\(=\left(x^3-3^3\right)-\left(54+x^3\right)\)
\(=x^3-27-54-x^3\)
\(=-81\)
\(b.\)
\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(27x^3+y^3\right)-\left(27x^3-y^3\right)\)
\(=27x^3+y^3-27x^3+y^3\)
\(=2y^3\)
\(2.\)
\(a.\)
\(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
\(b.\)
\(\left(2x-3y\right)\left(4x^2+6xy+9y^3\right)=8x^3-27y^3\)
1) a) \(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)
\(=\left(x^3-3^3\right)-\left(54+x^3\right)\\ =\left(x^3-27\right)-54-x^3\\ =-27-54\\ =-81\)
b) \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left[\left(3x\right)^3+y^3\right]-\left[\left(3x\right)^3-y^3\right]\\ =2y^3\)
2) a) \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
b) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=8x^3-27y^3\)
\(a,=\left(x+3\right)^3=\left(-3+3\right)^3=0\\ b,=27x^3+1-\left(1-27x^3\right)=27x^3+1-1+27x^3=54x^3\\ =54\cdot10^3=54\cdot1000=54000\)
c, hình như sai đề á e
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
2
Ta có:
VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)
=a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)
=a3+b3=VT(dpcm)
1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)
a )
`VP= (a+b)^3-3ab(a+b)`
`=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`
`=a^3+b^3 =VT (đpcm)`
b)
b) Ta có
`VT=a3+b3+c3−3abc`
`=(a+b)3−3ab(a+b)+c3−3abc`
`=[(a+b)3+c3]−3ab(a+b+c)`
`=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`
`=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`
`=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`
a) Ta có:
`VP= (a+b)^3-3ab(a+b)`
`=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`
`=a^3 + b^3=VT(dpcm)`
b) Ta có
`VT=a^3+b^3+c^3−3abc`
`=(a+b)^3−3ab(a+b)+c^3−3abc`
`=[(a+b)^3+c^3]−3ab(a+b+c)`
`=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`
`=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`
`=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`
a) HS tự chứng minh.
b) Áp dụng tính được:
i) 9261; ii) 7880599;
iii) 5840; iv) 12140.
\(A=x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)=x\left(y^2-z^2\right)+y\left(-y^2+z^2-x^2+y^2\right)+z\left(x^2-y^2\right)=\left(y^2-z^2\right)\left(x-y\right)+\left(x^2-y^2\right)\left(z-y\right)=\left(y-z\right)\left(y+z\right)\left(x-y\right)-\left(x-y\right)\left(x+y\right)\left(y-z\right)=\left(x-y\right)\left(y-z\right)\left(y+z-x-y\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(B=a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c+abc+b^2c\right)\)
Bài 3:
a: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4\cdot12=1\)
b: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=7^3-3\cdot12\cdot7\)
\(=343-252=91\)
Tham khảo nha \(\)
1. Rút gọn:
a/ \(\left(x-3\right)\left(x^2+3x+9\right)+\left(54+x^3\right)\)
= \(x^3+3x^2+9x-3x^2-9x-27+54+x^3\)
= \(2x^3+27\)
b/ \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=27x^3-9x^2y+3xy^2+9x^2y-3xy^2+y^3-27x^3+9x^2y+3xy^2-9x^2y-3xy^2-y^3\)
\(=\left(27x^3-y^3\right)-\left(27x^3+y^3\right)\)
\(=27x^3-y^3-27x^3-y^3=-2y^3\)
2.Chứng minh rằng:
a/ \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
Xét VP có:
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3\)
=> VT=VP
=> \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
b/ \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
Xét VP có:
\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
\(=a^3-b^3\)
=> VT=VP
=> \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
Chúc bạn học tốt ♥khong bt ai hay sao ma con tra loi gium nua cho hung du sao van cam on