K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

Bài làm

a) 2(x + y)3 + 2(x - y)3 

= 2[(x + y)3 + (x - y)3]

= 2[x3 + 3x2y + 3xy2 + y3 + x3 - 3x2y + 3xy2 - y3]

= 2[(x3 + x3) + (3x2y - 3x2y) + (3xy2 + 3xy2) + (y3 - y3)]

= 2[2x3 + 6xy2]

= 4x3 + 12xy2

b)uhm... Mình sửa đề chút, thay vì là -3(x + y)2(x - y) thì mình sẽ thành +3(x + y)2(x - y)

(x - y)3 - (x + y)3 + 3(x + y)2(x - y) - 3(x + y)(x - y)2

= -[(x + y)3 - 3(x + y)2(x - y) + 3(x + y)(x - y)2 - (x - y)3]

= -[(x + y) - (x - y)]3 

= -[x + y - x + y ]3

= -[y]3 

= -y

25 tháng 2 2021

`a,(25xy^3(2x-y)^2)/(75xy^2(y-2x))(x,y ne 0)(y ne 2x)`

`=(25xy^3(y-2x)^2)/(75xy^2(y-2x))`

`=(y(y-2x))/3`

`b,(x^2-y^2)/(x^2-y^2+xz-yz)`

`=((x-y)(x+y))/((x-y)(x+y)+z(x-y))`

`=(x+y)/(x+y+z)`

`c,((2x+3)-x^2)/(x^2-1)(x ne +-1)`

`=(-(x^2-3x+x-3))/((x-1)(x+1))`

`=(-x(x-3)+x-3)/((x-1)(x+1))`

`=((x-3)(1-x))/((x-1)(x+1))`

`=(3-x)/(1+x)`

`d,(3x^3-7x^2+5x-1)/(2x^3-x^2-4x+3)`

`=(3x^3-3x^2-4x^2+4x+x-1)/(2x^3-2x^2+x^2-x-3x+3)`

`=(3x^2(x-1)-4x(x-1)+x-1)/(2x^2(x-1)+x(x-1)-3(x-1))`

`=(3x^2-4x+1)/(2x^2+x-3)`

`=(3x^2-3x-x+1)/(2x^2-2x+3x-3)`

`=(3x(x-1)-(x-1))/(2x(x-1)+3(x-1))`

`=(3x-1)/(2x+3)`

a) Ta có: \(\dfrac{25xy^3\cdot\left(2x-y\right)^2}{75xy^2\cdot\left(y-2x\right)}\)

\(=\dfrac{25xy^2\cdot y\cdot\left(y-2x\right)^2}{25xy\cdot y\cdot\left(y-2x\right)\cdot3}\)

\(=\dfrac{y\left(y-2x\right)}{3}\)

 

15 tháng 12 2021

\(A=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{2\left(x-2\right)}{x+2}\\ A=\dfrac{2\left(\dfrac{1}{2}-2\right)}{\dfrac{1}{2}+2}=\dfrac{2\left(-\dfrac{3}{2}\right)}{\dfrac{5}{2}}=\left(-3\right)\cdot\dfrac{2}{5}=-\dfrac{6}{5}\)

\(B=\dfrac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{x}{x+y}=\dfrac{-5}{-5+10}=\dfrac{-5}{5}=-1\)

a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)

\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)

\(=2x^2-4xy+\dfrac{15}{4}y^2\)

b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)

\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)

\(=2x^2+2x+13-2x^2+2\)

=2x+15

2 tháng 10 2021

a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)

b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)

\(=2x+15\)