Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^2+6xy+5y^2-5y-x\)
\(=\left(x^2-xy+x\right)+\left(5xy+5y^2-5y\right)\)
\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)
\(\left(x+5y\right)\left(x+y-1\right)\)
2) Ta có : \(a^3-3ab^2=5\)
\(\Rightarrow\)\(\left(a^3-3ab^2\right)^2-100=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)
Và \(b^3-3a^2b=10\)
\(\Rightarrow\)\(\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2-9a^4b^2=100\)
\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)
Hoặc \(125=\left(a^2+b^2\right)^3\Rightarrow a^2+b^2=5\)
Do đó : \(S=2016\left(a^2+b^2\right)=2016.5=10080\)
1, x^2 + 6xy + 5y^2 - 5y - x
= x^2 + xy - x + 5xy + 5y^2 - 5y
= x(x + y - 1) + 5y(x + y - 1)
= (x + 5y)(x + y - 1
2,
a^3 - 3ab^2 = 5
<=> (a^3 - 3ab^2)^2 = 25
<=> a^6 - 6a^4b^2 + 9a^2b^4 = 25 (1)
b^3 - 3a^2b = 10
<=> (b^3 - 3a^2b)^2 = 100
<=> b^6 - 6b^4a^2 + 9a^4b^2 = 100 (2)
(1) + (2) = a^6 - 6a^4b^2 + 9a^2b^4 + b^6 - 6b^4a^2 + 9a^4b^2 = 25 + 100
<=> a^6 + 3a^4b^2 + 3a^2b^4 + b^6 = 125
<=> (a^2 + b^2)^3 = 125
<=> a^2 + b^2 = 5
<=> 2016(a^2 + b^2) = 5.2016
<=> 2016a^2 + 2016b^2 = 10080
\(a^3-3ab^2=5=>(a^3-3ab^2)^2=25\)
\(b^3-3a^2b=10=>(b^3-3a^2b)^2=100\)
=>\(a^6-6a^4b^2+9a^2b^4\)=25
\(b^6-6a^2b^4+9a^4b^2=100\)
=>\(a^6+3a^2b^4+3a^4b^2+b^6=125\)
=>(\(a^2+b^2)^3=125\)
=>\(a^2+b^2=5\)
=>2016\(a^2+2016b^2=10080\)
Phân tích các đa thức sau thành nhân tử :
a) x - y + 5x - 5y
= ( x + 5x ) - ( y + 5y )
= x . ( 1 + 6 ) - y . ( 1 + 6 )
= ( 1 + 6 ) . ( x - y )
\(a,x-y+5x-5y=\left(x-y\right)+5\left(x-y\right)=6\left(x-y\right)\)
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, ĐK x >= 0
\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(-4x^2-4x+10=-\left(4x^2+4x+1\right)+11\)
\(=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11;12 xem lại đề
13, \(-x^3+6xy^2-12xy^2+8y^3=-\left(x^3-6xy^2+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
Trả lời:
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, \(x-2\sqrt{x}-3\left(ĐK:x\ge0\right)\)
\(=x-3\sqrt{x}+\sqrt{x}-3=\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(10-4x-4x^2=-\left(4x^2+4x-10\right)=-\left(4x^2+4x+1-11\right)=-\left[\left(2x+1\right)^2-11\right]\)
\(=-\left(2x+1\right)^2+11=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11,sửa đề: \(15x\left(x-3y\right)+20y\left(3y-x\right)=15x\left(x-3y\right)-20y\left(x-3y\right)=5\left(x-3y\right)\left(3x-4y\right)\)
12, \(25x^2-2=\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)\)
13, sửa đề: \(-x^3+6x^2y-12xy^2+8y^3=-\left(x^3-6x^2y+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
2, a^3-3ab^2 = 5
<=> (a^3-3ab^2)^2 = 25
<=> a^6-6a^4b^2+9a^2b^4 = 25
b^3-3a^2b=10
<=> (b^3-3a^2b)^2 = 100
<=> b^6-6a^2b^4+9a^4b^2 = 100
=> 100+25 = a^6-6a^4b^2+9a^2b^4+b^6+6a^2b^4+9a^4b^2
<=> 125 = a^6+3a^4b^2+3a^3b^4+b^6 = (a^2+b^2)^3
<=> a^2+b^2 = 5
Khi đó : S = 2016.(a^2+b^2) = 2016.5 = 10080
Tk mk nha
1) \(x^2+6xy+5y^2-5y-x=\left(x^2+xy-x\right)+\left(5xy+5y^2-5y\right)\)
\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)
\(=\left(x+5y\right)\left(x+y-1\right)\)
2) Ta có : \(a^3-3ab^2-5\Rightarrow\left(a^3-3ab^2\right)^2=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)
và \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2+9a^4b^2=100\)
\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)
Hay \(125=\left(a^2+b^2\right)^2\Rightarrow a^2+b^2=5\)
Nên \(S=2016\left(a^2+b^2\right)=2016.5=10080\)