Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^2+6xy+5y^2-5y-x\)
\(=\left(x^2-xy+x\right)+\left(5xy+5y^2-5y\right)\)
\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)
\(\left(x+5y\right)\left(x+y-1\right)\)
2) Ta có : \(a^3-3ab^2=5\)
\(\Rightarrow\)\(\left(a^3-3ab^2\right)^2-100=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)
Và \(b^3-3a^2b=10\)
\(\Rightarrow\)\(\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2-9a^4b^2=100\)
\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)
Hoặc \(125=\left(a^2+b^2\right)^3\Rightarrow a^2+b^2=5\)
Do đó : \(S=2016\left(a^2+b^2\right)=2016.5=10080\)
= x2 + 6xy + 5y2 - 5y - x
= 5y2 + 5xy - 5y + xy + x2 - x
= 5y(y + x - 1) + x(y + x - 1)
= (y + x - 1)(5y + x)
Bài 2 :
1) \(x^2+6xy+5y^2-5y-x=x^2-x+xy+5y^2-5y+5xy\)
\(=x\left(x-1+y\right)+5y\left(y-1+x\right)=\left(x+y-1\right)\left(x+5y\right)\)
Ca ca câu này mụi lm đc òi, lm hộ mụi mấy cái khác ik
1, x^2 + 6xy + 5y^2 - 5y - x
= x^2 + xy - x + 5xy + 5y^2 - 5y
= x(x + y - 1) + 5y(x + y - 1)
= (x + 5y)(x + y - 1
2,
a^3 - 3ab^2 = 5
<=> (a^3 - 3ab^2)^2 = 25
<=> a^6 - 6a^4b^2 + 9a^2b^4 = 25 (1)
b^3 - 3a^2b = 10
<=> (b^3 - 3a^2b)^2 = 100
<=> b^6 - 6b^4a^2 + 9a^4b^2 = 100 (2)
(1) + (2) = a^6 - 6a^4b^2 + 9a^2b^4 + b^6 - 6b^4a^2 + 9a^4b^2 = 25 + 100
<=> a^6 + 3a^4b^2 + 3a^2b^4 + b^6 = 125
<=> (a^2 + b^2)^3 = 125
<=> a^2 + b^2 = 5
<=> 2016(a^2 + b^2) = 5.2016
<=> 2016a^2 + 2016b^2 = 10080
2, a^3-3ab^2 = 5
<=> (a^3-3ab^2)^2 = 25
<=> a^6-6a^4b^2+9a^2b^4 = 25
b^3-3a^2b=10
<=> (b^3-3a^2b)^2 = 100
<=> b^6-6a^2b^4+9a^4b^2 = 100
=> 100+25 = a^6-6a^4b^2+9a^2b^4+b^6+6a^2b^4+9a^4b^2
<=> 125 = a^6+3a^4b^2+3a^3b^4+b^6 = (a^2+b^2)^3
<=> a^2+b^2 = 5
Khi đó : S = 2016.(a^2+b^2) = 2016.5 = 10080
Tk mk nha
1) \(x^2+6xy+5y^2-5y-x=\left(x^2+xy-x\right)+\left(5xy+5y^2-5y\right)\)
\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)
\(=\left(x+5y\right)\left(x+y-1\right)\)
2) Ta có : \(a^3-3ab^2-5\Rightarrow\left(a^3-3ab^2\right)^2=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)
và \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2+9a^4b^2=100\)
\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)
Hay \(125=\left(a^2+b^2\right)^2\Rightarrow a^2+b^2=5\)
Nên \(S=2016\left(a^2+b^2\right)=2016.5=10080\)