Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, a^3-3ab^2 = 5
<=> (a^3-3ab^2)^2 = 25
<=> a^6-6a^4b^2+9a^2b^4 = 25
b^3-3a^2b=10
<=> (b^3-3a^2b)^2 = 100
<=> b^6-6a^2b^4+9a^4b^2 = 100
=> 100+25 = a^6-6a^4b^2+9a^2b^4+b^6+6a^2b^4+9a^4b^2
<=> 125 = a^6+3a^4b^2+3a^3b^4+b^6 = (a^2+b^2)^3
<=> a^2+b^2 = 5
Khi đó : S = 2016.(a^2+b^2) = 2016.5 = 10080
Tk mk nha
1) \(x^2+6xy+5y^2-5y-x=\left(x^2+xy-x\right)+\left(5xy+5y^2-5y\right)\)
\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)
\(=\left(x+5y\right)\left(x+y-1\right)\)
2) Ta có : \(a^3-3ab^2-5\Rightarrow\left(a^3-3ab^2\right)^2=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)
và \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2+9a^4b^2=100\)
\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)
Hay \(125=\left(a^2+b^2\right)^2\Rightarrow a^2+b^2=5\)
Nên \(S=2016\left(a^2+b^2\right)=2016.5=10080\)
1) \(x^2+6xy+5y^2-5y-x\)
\(=\left(x^2-xy+x\right)+\left(5xy+5y^2-5y\right)\)
\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)
\(\left(x+5y\right)\left(x+y-1\right)\)
2) Ta có : \(a^3-3ab^2=5\)
\(\Rightarrow\)\(\left(a^3-3ab^2\right)^2-100=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)
Và \(b^3-3a^2b=10\)
\(\Rightarrow\)\(\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2-9a^4b^2=100\)
\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)
Hoặc \(125=\left(a^2+b^2\right)^3\Rightarrow a^2+b^2=5\)
Do đó : \(S=2016\left(a^2+b^2\right)=2016.5=10080\)
\(a^3-3ab^2=5=>(a^3-3ab^2)^2=25\)
\(b^3-3a^2b=10=>(b^3-3a^2b)^2=100\)
=>\(a^6-6a^4b^2+9a^2b^4\)=25
\(b^6-6a^2b^4+9a^4b^2=100\)
=>\(a^6+3a^2b^4+3a^4b^2+b^6=125\)
=>(\(a^2+b^2)^3=125\)
=>\(a^2+b^2=5\)
=>2016\(a^2+2016b^2=10080\)
Phân tích các đa thức sau thành nhân tử :
a) x - y + 5x - 5y
= ( x + 5x ) - ( y + 5y )
= x . ( 1 + 6 ) - y . ( 1 + 6 )
= ( 1 + 6 ) . ( x - y )
\(a,x-y+5x-5y=\left(x-y\right)+5\left(x-y\right)=6\left(x-y\right)\)
a,\(\frac{1}{5}x^2y\left(15xy^2-5y+3xy\right)=3x^3y^3-x^2y^2+\frac{3}{5}x^3y^2\)
b,\(5x^3-5x=5x\left(x^2-1\right)=5x\left(x-1\right)\left(x+1\right)\)
c, \(3x^2+5y-3xy-5x=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
1) 1/5x2y( 15xy2 - 5y + 3xy ) = 3x3y3 - x2y2 + 3/5x3y2
2) a) 5x3 - 5x = 5x( x2 - 1 ) = 5x( x2 - 12 ) = 5x( x - 1 )( x + 1 )
b) 3x2 + 5y - 3xy - 5x = ( 3x2 - 3xy ) + ( 5y - 5x )
= 3x( x - y ) + 5( y - x )
= 3x( x - y ) + 5[ -( x - y ) ]
= 3x( x - y ) - 5( x - y )
= ( 3x - 5 )( x - y )
1, x^2 + 6xy + 5y^2 - 5y - x
= x^2 + xy - x + 5xy + 5y^2 - 5y
= x(x + y - 1) + 5y(x + y - 1)
= (x + 5y)(x + y - 1
2,
a^3 - 3ab^2 = 5
<=> (a^3 - 3ab^2)^2 = 25
<=> a^6 - 6a^4b^2 + 9a^2b^4 = 25 (1)
b^3 - 3a^2b = 10
<=> (b^3 - 3a^2b)^2 = 100
<=> b^6 - 6b^4a^2 + 9a^4b^2 = 100 (2)
(1) + (2) = a^6 - 6a^4b^2 + 9a^2b^4 + b^6 - 6b^4a^2 + 9a^4b^2 = 25 + 100
<=> a^6 + 3a^4b^2 + 3a^2b^4 + b^6 = 125
<=> (a^2 + b^2)^3 = 125
<=> a^2 + b^2 = 5
<=> 2016(a^2 + b^2) = 5.2016
<=> 2016a^2 + 2016b^2 = 10080