Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (rupi) là giá tiền mỗi quả thanh yên.
Gọi y (rupi) là giá tiền mỗi quả táo rừng thơm.
Điều kiện x > 0, y > 0.
Mua 9 quả thanh yên và 8 quả táo rừng thơm hết 107 rupi
⇒ 9x + 8y = 107.
Mua 7 quả thanh yên và 7 quả táo rừng thơm là 91 rupi
⇒ 7x + 7y = 91 ⇔ x + y = 13.
Ta có hệ phương trình:
Vậy giá mỗi quả thanh yên là 3 rupi và mỗi quả táo rừng thơm là 10 rupi.
Gọi x (rupi) là giá tiền mỗi quả thanh yên.
Gọi y (rupi) là giá tiền mỗi quả táo rừng.
Điều kiện x > 0, y > 0.
Ta có hệ phương trình:
Giải ra ta được x = 3, y = 10.
Vậy, thanh yên 3 rupi/quả
táo rừng 10 rupi/quả.
bn ơi sao nhiều câu 2 thế?
Giải câu 1 : mảnh vườn..
gọi chiều dài mảnh vườn là x m(x>0)
gọi chiều rộng mảnh vườn là y m(y>0)
chu vi mảnh vườn hình chữ nhật đó là : ( x+y).2 =44 \(\Rightarrow\)x+y = 22 \(\Rightarrow\)x=22-y
Theo đề bài ta có : Diện tích mảnh vườn HCN là : (x+3)(x+2)=xy +55 (1)
Giải phương trình (1) : \(xy+2x+3y+6=xy+55\)
\(\Leftrightarrow2x+3y=49\)
Thay x=22-y vào phương trình trên ta có:
\(2\left(22-y\right)+3y=49\)
\(\Leftrightarrow44-2y+3y=49\)
\(\Leftrightarrow y=5\)\(\Rightarrow\)X=17
Vậy chiều dài mảnh vườn là 17 m, chiều rộng mảnh vườn là 5 m
Giải câu 2 :phòng học...
Gọi số ghế trong lớp học là x ghế ( x>0)
Gọi số học sinh trong lớp học là y học sinh ( y>0)
Do xếp mỗi ghế 3 hs thì thừa 4 hs k có chỗ nên ta có phương trình (1) : 3x+4=y
Do xếp mỗi ghế 4 học sinh thì thừa ra 2 ghế. nên ta có phương trình (2) : 4(x-2) =y
Từ 2 phương trình trên ta có : 3x+4 = 4(x-2) =y
\(\Leftrightarrow3x+4=4x-8\)
\(\Leftrightarrow3x-4x=-8-4\)
\(\Leftrightarrow-x=-12\)
\(\Leftrightarrow x=12\) \(\Leftrightarrow y=3.12+4=40\)
Vậy trong phòng học có 12 ghế và 40 học sinh
Gọi số người dự họp và số ghế có trong phòng lần lượt là \(a,b\)(\(a,b\inℕ\))
Theo bài ra ta có hệ phương trình: \(\hept{\begin{cases}a=5b+9\\a=6b-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=59\\b=10\end{cases}}\)(thỏa mãn)
Lời giải:
Giả sử trong phòng học có $a$ học sinh.
Theo bài ra, nếu xếp mỗi bộ bàn ghế 3 hs thì số bộ bàn ghế là:
$\frac{a-4}{3}$ (bộ)
Nếu xếp mỗi bộ bàn ghế 4 học sinh thì số bộ bàn ghế là:
$\frac{a-2}{4}$ (bộ)
Số bộ bàn ghế không đổi nên: $\frac{a-4}{3}=\frac{a-2}{4}$
$\Rightarrow a=10$ (hs)
Số bộ bàn ghế là: $\frac{a-2}{4}=\frac{10-2}{4}=2$ (bộ)
1.
Gọi số tự nhiên cần tìm là \(\overline{xy}\) \(\left(DK:0\le x,y\le9;x,y\in N\right)\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}\overline{xy}-2\left(x+y\right)=51\\2x+3y=29\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}10x+y-2x-2y=51\\2x+3y=29\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}8x-y=51\\2x+3y=29\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=7\left(TMDK\right)\\y=5\left(TMDK\right)\end{matrix}\right.\)
Vậy số tự nhiên cần tìm là 75
2.
Gọi số ghế là x, số học sinh là y.
Theo đề, ta có:
\(\left\{{}\begin{matrix}y=3x+6\\y=4\left(x-1\right)\end{matrix}\right.\\ \Leftrightarrow3x+6=4x-4\\ \Leftrightarrow x=10\\ \Rightarrow y=36\)
Vậy lớp có 10 ghế và 36 học sinh.