K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

Tui học lớp 7 đăng bài lớp 8 không được sao?

25 tháng 7 2021

a, mình nghĩ đề là cm đẳng thức nhé 

\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)

Vậy ta có đpcm 

b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)

\(=-5y-9+xy=VP\)

Vậy ta có đpcm 

c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)

Vậy ta có đpcm 

20 tháng 11 2019

a) \(\frac{3x^2-6xy+3y^2}{5x^2-5xy+5y^2}:\frac{10x-10y}{x^3+y^3}\)

\(=\frac{3x^2-6xy+3y^2}{5x^2-5xy+5y^2}.\frac{x^3+y^3}{10x-10y}\)

\(=\frac{3\left(x^2-2xy+y^2\right)}{5\left(x^2-xy+y^2\right)}.\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{10\left(x-y\right)}\)

\(=\frac{3\left(x^2-2xy+y^2\right)}{5}.\frac{x+y}{10\left(x-y\right)}\)

\(=\frac{3\left(x-y\right)^2}{5}.\frac{x+y}{10\left(x-y\right)}\)

\(=\frac{3\left(x-y\right)}{5}.\frac{x+y}{10}\)

\(=\frac{3x^2-3y^2}{50}\)

20 tháng 11 2019

c) \(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)-\frac{x^2-y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\frac{y-x}{xy}-\frac{\left(x+y\right)\left(x-y\right)}{\left(x-y\right)^2}\)

\(=\frac{2}{y-x}-\frac{x+y}{x-y}\)

\(=\frac{2}{y-x}+\frac{x+y}{y-x}\)

\(=\frac{x+y+2}{y-x}\)

b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)

\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

21 tháng 10 2020

cau a : (3x^2y-6xy+9x)(-4/3xy)

           =-4/3xy.3x^2y+4/3xy.6xy-4/3xy.9x

           =-4x+8-8y

cau b : (1/3x+2y)(1/9x^2-2/3xy+4y^2)

            =(1/3)^3-2/9x^2y+8y^3+4/3xy^2+2/9x^2y-4/3xy^2+8y^3

             =(1/3)^3 + (2y)^3x-2

cau c :  (x-2)(x^2-5x+1)+x(x^2+11)

            =x^3-5x^2+x-2x^2+10x-2+x^3+11x

            =2x^3-7x^2+22x-2

cau d := x^3 + 6xy^2 -27y^3

cau e := x^3 + 3x^2 -5x - 3x^2y - 9xy = 15y

cau f := x^2-2x+2x -4-2x-1

          = x(x-2)-5

21 tháng 10 2020

cau e la + 15y ko phai =15y

19 tháng 4 2017

a) x2(5x3 – x - \(\dfrac{1}{2}\) )= x2. 5x3 + x2 . (-x) + x2 . (-\(\dfrac{1}{2}\))

= 5x5 – x3\(\dfrac{1}{2}\)x2

b) (3xy – x2 + y)\(\dfrac{2}{3}\)x2y = \(\dfrac{2}{3}\)x2y . 3xy + \(\dfrac{2}{3}\)x2y . (- x2) + \(\dfrac{2}{3}\)x2y . y

= 2x3y2\(\dfrac{2}{3}\)x4y + \(\dfrac{2}{3}\)x2y2

c) (4x3– 5xy + 2x)(- \(\dfrac{1}{2}\)xy) = - \(\dfrac{1}{2}\)xy . 4x3 + (- \(\dfrac{1}{2}\)xy) . (-5xy) + (- \(\dfrac{1}{2}\)xy) . 2x

= -2x4y + \(\dfrac{5}{2}\)x2y2 - x2y.




14 tháng 8 2017

a) x2 (5x3 - x - \(\dfrac{1}{2}\))

= 5x5 - x3 - \(\dfrac{1}{2}\)x2

b) (3xy - x2 + y) \(\dfrac{2}{3}\)x2y

= 2x3y2 - \(\dfrac{2}{3}\)x4y + \(\dfrac{2}{3}\)x2y2

c) (4x3 - 5xy +2x) (-\(\dfrac{1}{2}\)xy)

= -2x4y + \(\dfrac{5}{2}\)x2y2 - x2y

`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`

`= 2xy`.

Thay `x = 2/3; y = -3/4` vào BT:

`2 . 2/3 . -3/4 = -1.`

`b, x(x-2y) - y(y^2-2x)`

`= x^2 - 2xy - y^3 + 2xy`

`= x^2 - y^3`

Thay `x = 5; y =3` vào BT:

`= 5^2 - 3^3 = 25 - 27 = -2`

22 tháng 7 2023

a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)

\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)

\(=2xy\)

Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:

\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)

b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)

\(=x^2-2xy-y^3+2xy\)

\(=x^2-y^3\)

Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)

a) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)\)

\(=\left(x-3\right)\left(x^2+x\cdot3+3^2\right)\)

\(=x^3-3^3=x^3-27\)

b) Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)\)

\(=\left(x-2\right)\left(x^2+x\cdot2+2^2\right)\)

\(=x^3-2^3=x^3-8\)

c) Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)\)

\(=\left(x+4\right)\left(x^2-x\cdot4+4^2\right)\)

\(=x^3+4^3=x^3+64\)

d) Ta có: \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2+x\cdot3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3=x^3-27y^3\)

e) Ta có: \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\)

\(=\left(x^2-\frac{1}{3}\right)\left[\left(x^2\right)^2+x^2\cdot\frac{1}{3}+\left(\frac{1}{3}\right)^2\right]\)

\(=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3\)

\(=x^6-\frac{1}{27}\)

f) Ta có: \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)

\(=\left(\frac{1}{3}x+2y\right)\left[\left(\frac{1}{3}x\right)^2-\frac{1}{3}x\cdot2y+\left(2y\right)^2\right]\)

\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3\)

\(=\frac{1}{27}x^3+8y^3\)