K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

1. 

a)      \({\left( {x + 3} \right)^3} = {x^3} + 3.{x^2}.3 + 3.x{.3^2} + {3^3} = {x^3} + 9{x^2} + 27x + 27\)

b)      \({\left( {x + 2y} \right)^3} = {x^3} + 3.{x^2}.2y + 3.x.{\left( {2y} \right)^2} + {\left( {3y} \right)^3} = {x^3} + 6{x^2}y + 12x{y^2} + 27{y^3}\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

2. 

\(\begin{array}{l}{\left( {2x + y} \right)^3} - 8{x^3} - {y^3} = {\left( {2x} \right)^3} + 3.{\left( {2x} \right)^2}.y + 3.2x.{y^2} + {y^3} - 8{x^3} - {y^3}\\ = 8{x^3} + 12{x^2}y + 6x{y^2} + {y^3} - 8{x^3} - {y^3}\\ = \left( {8{x^3} - 8{x^3}} \right) + 12{x^2}y + 6x{y^2} + \left( {{y^3} - {y^3}} \right)\\ = 12{x^2}y + 6x{y^2}\end{array}\)

29 tháng 7 2023

a) \(Q=\left(x-y\right)^2-4\left(x-y\right)\left(x+2y\right)+4\left(x+2y\right)^2\)

\(Q=\left(x-y\right)^2-2\cdot\left(x-y\right)\cdot2\left(x+2y\right)+\left[2\left(x+2y\right)\right]^2\)

\(Q=\left[\left(x-y\right)-2\left(x+2y\right)\right]^2\)

\(Q=\left(x-y-2x-4y\right)^2\)

\(Q=\left(-x-5y\right)^2\)

b) \(A=\left(xy+2\right)^3-6\left(xy+2\right)^2+12\left(xy+2\right)-8\)

\(A=\left(xy+2\right)^3-3\cdot2\cdot\left(xy+2\right)^2+3\cdot2^2\cdot\left(xy+2\right)-2^3\)

\(A=\left[\left(xy+2\right)-2\right]^3\)

\(A=\left(xy+2-2\right)^3\)

\(A=\left(xy\right)^3\)

\(A=x^3y^3\)

c) \(\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)

\(=\left(x^3+6x^2+12x+8\right)+\left(x^2-6x^2+12x-8\right)-\left(2x^3+24x\right)\)

\(=x^3+6x^2+12x+8+x^2-6x^2+12x-8-2x^3-24x\)

\(=\left(x^3+x^3-2x^3\right)+\left(6x^2-6x^2\right)+\left(12x+12x-24x\right)+\left(8-8\right)\)

\(=0\)

a: =(x-y)^2-2(x-y)(2x+4y)+(2x+4y)^2

=(x-y-2x-4y)^2=(-x-5y)^2=x^2+10xy+25y^2

b: =(xy+2-2)^3=(xy)^3=x^3y^3

c: =x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x(x^2+12)

=24x+2x^3-2x^3-24x

=0

a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)

\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)

\(=2x^2-4xy+\dfrac{15}{4}y^2\)

b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)

\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)

\(=2x^2+2x+13-2x^2+2\)

=2x+15

2 tháng 10 2021

a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)

b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)

\(=2x+15\)

16 tháng 12 2017

a)  A \(=\)\(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)\(=\)\(\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)

\(=\)\(\frac{2\left(x-2\right)}{x+2}\)\(=\)\(\frac{2x-4}{x+2}\)

Tại   x = \(\frac{1}{2}\)thì:

             A = \(\frac{2.\frac{1}{2}-4}{\frac{1}{2}+2}\)\(=\)\(\frac{-3}{\frac{5}{2}}\)\(=\)\(\frac{-6}{5}\)

12 tháng 7 2017

a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24\)

\(=24-11x\)

b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)

\(=8x^2y-6y^2-9x^2y+12y^2\)

\(=6y^2-x^2y\)

c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)

\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)

\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)

\(=4y^3+y^2+6xy^2\)

25 tháng 2 2021

`a,(25xy^3(2x-y)^2)/(75xy^2(y-2x))(x,y ne 0)(y ne 2x)`

`=(25xy^3(y-2x)^2)/(75xy^2(y-2x))`

`=(y(y-2x))/3`

`b,(x^2-y^2)/(x^2-y^2+xz-yz)`

`=((x-y)(x+y))/((x-y)(x+y)+z(x-y))`

`=(x+y)/(x+y+z)`

`c,((2x+3)-x^2)/(x^2-1)(x ne +-1)`

`=(-(x^2-3x+x-3))/((x-1)(x+1))`

`=(-x(x-3)+x-3)/((x-1)(x+1))`

`=((x-3)(1-x))/((x-1)(x+1))`

`=(3-x)/(1+x)`

`d,(3x^3-7x^2+5x-1)/(2x^3-x^2-4x+3)`

`=(3x^3-3x^2-4x^2+4x+x-1)/(2x^3-2x^2+x^2-x-3x+3)`

`=(3x^2(x-1)-4x(x-1)+x-1)/(2x^2(x-1)+x(x-1)-3(x-1))`

`=(3x^2-4x+1)/(2x^2+x-3)`

`=(3x^2-3x-x+1)/(2x^2-2x+3x-3)`

`=(3x(x-1)-(x-1))/(2x(x-1)+3(x-1))`

`=(3x-1)/(2x+3)`

a) Ta có: \(\dfrac{25xy^3\cdot\left(2x-y\right)^2}{75xy^2\cdot\left(y-2x\right)}\)

\(=\dfrac{25xy^2\cdot y\cdot\left(y-2x\right)^2}{25xy\cdot y\cdot\left(y-2x\right)\cdot3}\)

\(=\dfrac{y\left(y-2x\right)}{3}\)