Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\sqrt{\left(\sqrt{x+7}+1\right)^2}+\sqrt{x+7-\sqrt{x+7}-6}=4\)ĐK:\(x\ge-7\)
Đặt \(t=\sqrt{x+7}\left(t\ge0\right)\)
\(\Rightarrow t+1-4=\sqrt{t^2-t-6}\)
\(\Leftrightarrow t^2-6t+9=t^2-t-6\left(t\ge3\right)\)
\(\Leftrightarrow5t=15\)
\(\Leftrightarrow t=3\left(TM\right)\)\(\Rightarrow x=2\left(tm\right)\)
S={2}
b)ĐK:\(x\ge2\)
pt\(\Leftrightarrow\sqrt{x-2+2\sqrt{x-2}+2}-\sqrt{x-2-2\sqrt{x-2}+2}=-2\)
Đặt t= can(x-2)(t>=0)
Đến đây bạn giải tiếp nhé!
#Walker
\(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}=2}\)
\(\Leftrightarrow\left(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}\right)^2=4\)
\(\Leftrightarrow x-\sqrt{x^2-1}+2\sqrt{\left(x-\sqrt{x^2-1}\right)\left(x+\sqrt{x^2-1}\right)}+x+\sqrt{x^2-1}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-x^2+1}=4\)
\(\Leftrightarrow2x+2=4\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
vậy x=1
ĐK: \(x\ge5\)
Chuyển vế, bình phương ta đc:
\(\sqrt{5x^2+14x+9}=5\sqrt{\left(x^2-x-20\right)\left(x+1\right)}\)
Nhận xét:
Không tồn tại số \(\alpha,\beta\) để: \(2x^2-5x+2=\alpha\left(x^2-x-20\right)+\beta\left(x+1\right)\)
Ta có: \(\left(x^2-x-20\right)\left(x+1\right)=\left(x+4\right)\left(x-5\right)\left(x+1\right)=\left(x+4\right)\left(x^2-4x-5\right)\)
PT đc vt lại là: \(2\left(x^2-4x-5\right)+3\left(x+4\right)=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)
Đặt: \(\left\{{}\begin{matrix}u=x^2-4x-5\\v=x+4\end{matrix}\right.\)
Khi đó PT trở thành:
\(2u+3v=5\sqrt{uv}\Leftrightarrow\left[{}\begin{matrix}u=v\\u=\frac{9}{4}v\end{matrix}\right.\)
Xét \(u=v\) ta có PT:
\(x^2-4x-5=x+4\Leftrightarrow x^2-5x+9=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{61}}{2}\\x=\frac{5-\sqrt{61}}{2}\left(loại\right)\end{matrix}\right.\)
Xét \(u=\frac{9}{4}v\) ta có PT:
\(x^2-4x-5=\frac{9}{4}\left(x+4\right)\Leftrightarrow4x^2-25x-56=0\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{7}{4}\left(loại\right)\end{matrix}\right.\)
Vậy PT có 2 nghiệm là \(x=8;x=\frac{5+\sqrt{61}}{2}\)
`x=(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}})^2(1>=x>=0)`
`<=>x=((\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}})^2(1+\sqrt{1-\sqrt{x}}))/(1+\sqrt{1-\sqrt{x}})`
`<=>x=(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x})(1-1+\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})`
`<=>x=\sqrt{x}.(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})`
`<=>\sqrt{x}((\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})-1)=0`
Có `x>=0`
`=>1-\sqrt{x}<=1`
`=>1+\sqrt{1-\sqrt{x}}<=2`
`=>1/(1+\sqrt{1-\sqrt{x}})>=1/2`
Mà `(\sqrt{x}+2004)>=2004`
`=>(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x})>=2004`
`=>(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})>=1002>0`
`=>\sqrt{x}=0`
`=>x=0`
Vậy `S={0}`
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow x=\left(2004+\sqrt{x}\right)\left(\dfrac{\sqrt{x}}{1+\sqrt{1-\sqrt{x}}}\right)^2\)
\(\Leftrightarrow x=\dfrac{x\left(2004+\sqrt{x}\right)}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2004+\sqrt{x}}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2004+\sqrt{x}=2-\sqrt{x}+2\sqrt{1-\sqrt{x}}\)
\(\Leftrightarrow1001+\sqrt{x}=\sqrt{1-\sqrt{x}}\)
\(VT\ge1001\) ; \(VP\le1\) nên (1) vô nghiệm
Bài 1:
a: TH1: m=-2
Pt sẽ là \(-2\left(-2-1\right)x-2-2=0\)
=>2x-4=0
=>x=2
TH2: m<>-2
\(\text{Δ}=\left(2m-2\right)^2-4\left(m+2\right)\left(m-2\right)\)
\(=4m^2-8m+4-4\left(m^2-4\right)\)
=4m^2-8m+4-4m^2+16=-8m+20
Để phương trình vô nghiệm thì -8m+20<0
=>-8m<-20
=>m>5/2
Để phương trình có nghiệm duy nhất thì -8m+20=0
=>m=5/2
Để phương trình có hai nghiệm phân biệt thì -8m+20>0
=>m<5/2
Lời giải:
ĐK: $1\leq x\leq 3$
PT \(\Leftrightarrow \frac{x^2-2x+3-(x^2-6x+11)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}=\frac{3-x-(x-1)}{\sqrt{3-x}+\sqrt{x-1}}\)
\(\Leftrightarrow \frac{4(x-2)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2(x-2)}{\sqrt{3-x}+\sqrt{x-1}}=0\)
\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2}{\sqrt{3-x}+\sqrt{x-1}}\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông lớn hơn $0$ nên $x-2=0$
$\Rightarrow x=2$ (t/m)
Vậy.......
Lời giải:
ĐK: $1\leq x\leq 3$
PT \(\Leftrightarrow \frac{x^2-2x+3-(x^2-6x+11)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}=\frac{3-x-(x-1)}{\sqrt{3-x}+\sqrt{x-1}}\)
\(\Leftrightarrow \frac{4(x-2)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2(x-2)}{\sqrt{3-x}+\sqrt{x-1}}=0\)
\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2}{\sqrt{3-x}+\sqrt{x-1}}\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông lớn hơn $0$ nên $x-2=0$
$\Rightarrow x=2$ (t/m)
Vậy.......
b) Đặt \(u=\sqrt{1-x}\); \(v=\sqrt{1+x}\)
phương trình trở thành
\(2u-v+3uv=u^2+2\)\(\Rightarrow u^2-2u+v-3uv+2=0\)
lại có \(u^2+v^2=2\)
\(\Rightarrow u^2-2u-3uv+v+u^2+v^2=0\)
\(\Rightarrow\left(u-v-1\right)\left(2u-v\right)=0\)
đến đây thì easy rồi
a)
Đặt \(\sqrt{2x+1}=t\) ;\(\sqrt{x}=k\)
Phương trình trở thành
\(\left(3k^2+t^2\right)t-\left(3t^2+k^2\right)k-1=0\)
\(\Leftrightarrow3k^2t+t^3-3t^2k-k^3-1=0\)
\(\Leftrightarrow\left(t-k\right)\left(t^2+kt+k^2\right)-3tk\left(t-k\right)-1=0\)
\(\Leftrightarrow\left(t-k\right)^3-1=0\)
\(\Leftrightarrow\left(t-k-1\right)\left(\left(t-k\right)^2+t-k+1\right)=0\)
do t > k => t - k > 0
\(\Rightarrow\left(t-k\right)^2+t-k+1>0\)
\(\Rightarrow t-k-1=0\)
\(\Leftrightarrow t=1+k\)\(\Leftrightarrow\sqrt{2x+1}=1+\sqrt{x}\)
\(\Leftrightarrow2x+1=x+2\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
END
a/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow x+1-\sqrt{2x+2}+\sqrt{2x-1}-1=0\)
\(\Leftrightarrow\frac{x^2+2x+1-2x-2}{x+1+\sqrt{2x+2}}+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{x+1+\sqrt{2x+2}}+\frac{2}{\sqrt{2x-1}+1}\right)=0\)
\(\Rightarrow x=1\)
2/ ĐKXĐ:\(\left[{}\begin{matrix}x=0\\x\ge2\\x\le-3\end{matrix}\right.\)
- Nhận thấy \(x=0\) là 1 nghiệm
- Với \(x\ge2\):
\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-2}=2\sqrt{x+3}=\sqrt{4x+12}\)
Ta có \(VT\le\sqrt{2\left(x-1+x-2\right)}=\sqrt{4x-6}< \sqrt{4x+12}\)
\(\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm
- Với \(x\le-3\)
\(\Leftrightarrow\sqrt{1-x}+\sqrt{2-x}=2\sqrt{-x-3}\)
\(\Leftrightarrow3-2x+2\sqrt{x^2-3x+2}=-4x-12\)
\(\Leftrightarrow2\sqrt{x^2-3x+2}=-2x-15\) (\(x\le-\frac{15}{2}\))
\(\Leftrightarrow4x^2-12x+8=4x^2+60x+225\)
\(\Rightarrow x=-\frac{217}{72}\left(l\right)\)
Vậy pt có nghiệm duy nhất \(x=0\)
Bài 3: ĐKXĐ: \(-3\le x\le6\)
Đặt \(\sqrt{3+x}+\sqrt{6-x}=t\) \(\Rightarrow3\le t\le3\sqrt{2}\)
\(t^2=9+2\sqrt{\left(3+x\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(3+x\right)\left(6-x\right)}=\frac{9-t^2}{2}\)
Phương trình trở thành:
\(t+\frac{9-t^2}{2}=m\Leftrightarrow-t^2+2t+9=2m\) (2)
a/ Với \(m=3\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{3+x}+\sqrt{6-x}=3\)
\(\Leftrightarrow2\sqrt{\left(3+x\right)\left(6-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
b/ Xét hàm \(f\left(t\right)=-t^2+2t+9\) trên \(\left[3;3\sqrt{2}\right]\)
\(-\frac{b}{2a}=1< 3\Rightarrow\) hàm số nghịch biến trên \(\left[3;3\sqrt{2}\right]\)
\(f\left(3\right)=6\) ; \(f\left(3\sqrt{2}\right)=6\sqrt{2}-9\)
\(\Rightarrow6\sqrt{2}-9\le2m\le6\Rightarrow\frac{6\sqrt{2}-9}{2}\le m\le3\)
Bài 4 làm tương tự bài 3
1/ ĐKXĐ:...
\(\Leftrightarrow\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-2\sqrt{x+1}+1}=\frac{x+5}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(1-\sqrt{x+1}\right)^2}=\frac{x+5}{2}\)
\(\Leftrightarrow\sqrt{x+1}+1+\left|1-\sqrt{x+1}\right|=\frac{x+5}{2}\)
Nếu \(0\ge x\ge-1\Rightarrow\left|1-\sqrt{x+1}\right|=1-\sqrt{x+1}\)
\(\Rightarrow2=\frac{x+5}{2}\Leftrightarrow x=-1\left(tm\right)\)
Nếu \(x>0\Rightarrow\left|1-\sqrt{x+1}\right|=\sqrt{x+1}-1\)
\(\Rightarrow2\sqrt{x+1}=\frac{x+5}{2}\Leftrightarrow16x+16=x^2+10x+25\)
\(\Leftrightarrow x^2-6x+9=0\Leftrightarrow x=3\left(tm\right)\)
Vậy...
Câu dưới tương tự