Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\left(ĐKXĐ:x\ne\pm1;x\ne2\right)\)
\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{5}{2-x}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Leftrightarrow\)\(\frac{\left(x+1\right)\left(2-x\right)+5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(2-x\right)\left(x-1\right)}=\frac{15\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(2-x\right)}\)
Suy ra:
\(\Leftrightarrow\)(x+1)(2-x)+5(x-1)(x+1) = 15(x-1)
\(\Leftrightarrow\)2x-x2-x+2+5x2-5 = 15x-15
\(\Leftrightarrow\)2x-x2-x+5x2-15x = -15+5-2
\(\Leftrightarrow\)4x2-14x = -12
\(\Leftrightarrow4x^2-14x+12=0\)
\(\Leftrightarrow4x^2-8x-6x+12=0\)
\(\Leftrightarrow\)4x(x-2) - 6(x-2) = 0
\(\Leftrightarrow\left(x-2\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(kotm\right)\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất x = \(\frac{3}{2}\)
a) \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=x+\frac{7}{12}\)
\(\frac{3.3\left(2x+1\right)}{12}-\frac{2\left(5x+3\right)}{12}+\frac{4\left(x+1\right)}{12}=\frac{12x+7}{12}\)
\(18x+9-10x-6+4x+4=12x+7\)
\(0x=0\) ( vô số nghiệm )
Vậy x \(\in\)R
b) ĐKXĐ : x \(\ne\)-1;-3;-5;-7
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)
\(\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}\right)=\frac{3}{16}\)
\(\frac{1}{x+1}-\frac{1}{x+7}=\frac{3}{8}\)
\(\left(x+1\right)\left(x+7\right)=16\)
Ta thấy x+1 và x+7 là 2 số cách nhau 6 đơn vị . Mà x + 1 < x + 7
\(\Rightarrow\)\(\hept{\begin{cases}x+1=2\\x+7=8\end{cases}\Rightarrow x=1}\)
hoặc \(\hept{\begin{cases}x+1=-2\\x+7=-8\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\x=-15\end{cases}}\)( loại )
Vậy x = 1
\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right):\frac{4}{4x^2-4}\)
\(=\left(\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+2\right)}+\frac{6}{2.\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\frac{4}{4\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}.\left(x-1\right)\left(x+1\right)=\frac{4}{2}=2\)
Giải:
a) ⇔⇔ 9x2 + 12x + 4 - 18x + 12 = 9x2 ⇔ 9x2 + 12x + 4 - 18x + 12 - 9x2 = 0
⇔ 16 + 6x = 0 ⇔ 2(8 + 3x) = 0 ⇔ 8 + 3x = 0 ⇔ x = \(\frac{-8}{3}\)
Vậy nghiệm của phương trình là x = \(\frac{-8}{3}\) .
b) \(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\text{⇔ }\frac{-3}{1-5x}+\frac{-3}{5x-3}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
⇔ \(\frac{9-15x}{\left(1-5x\right)\left(5x-3\right)}+\frac{15x-3}{\left(1-5x\right)\left(5x-3\right)}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\) ⇔ 9 - 15x + 15x - 3 = 4
⇔ 8 = 4 ( vô lí)
Vậy phương trình trên vô nghiệm.
Mình chỉ làm 2 câu a, b thôi nhé! Các bài tập này cách làm giống nhau, bạn tự hoàn thành những bài còn lại nhé!
a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
ĐKXĐ: x≠1/4, x≠-1/4
⇔\(-\frac{3}{4x-1}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
⇔\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\frac{3+6x}{16x^2-1}\)
⇒-12x-3=8x-2-3-6x
⇔8x-6x+12x=-3+2+3
⇔14x=2
⇔x=1/7(tmđk)
Vậy phương trình có nghiệm là x=1/7
b, \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) (2)
ĐKXĐ: x≠0, x≠2
(2)⇔\(\frac{2\left(5-x\right)}{2.4x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4.\left(x-1\right)}{4.2x\left(x-2\right)}+\frac{x}{8.x\left(x-2\right)}\)
⇒10-2x+7x-14=4x-4+x
⇔-2x+7x-4x-x=-4-10+14
⇔0x=0
⇔ x∈R
Vậy phương trình có nghiệm là x∈R và x≠0, x≠2
c, \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (3)
ĐKXĐ: x≠0
(3)⇒x(x+1)(x2-x+1)-x(x-1)(x2+x+1)=3
⇔x4+x-x4+x=3
⇔2x=3
⇔x=3/2(tmđk)
Vậy phương trình có nghiệm là x=3/2
a) \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\)\(\frac{21\left(4x+3\right)-15\left(6x-2\right)}{105}=\frac{35\left(5x+4\right)+315}{105}\)
\(\Leftrightarrow21\left(4x+3\right)-15\left(6x-2\right)=35\left(5x+4\right)+315\)
\(\Leftrightarrow84x+63-90x+30=175x+140+315\)
\(\Leftrightarrow84x-90x-175x=140+315-63-30\)
\(\Leftrightarrow-181x=362\)
\(\Leftrightarrow x=-2\)
b)\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x+4\right)^2}{6}=0\)
\(\Leftrightarrow\)\(\frac{8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x+4\right)^2}{24}=0\)
\(\Leftrightarrow8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2+8x+16\right)=0\)
\(\Leftrightarrow8x^2-32x+32-12x^2+27+4x^2+32x+64=0\)
\(\Leftrightarrow8x^2-12x^2+4x^2-32x+32x=-64-27-32\)
\(\Leftrightarrow0x=-123\) (vô nghiệm)
1. ĐKXĐ : \(x\ne-1;-3;-5;-7\)
\(\frac{1}{x^2+x+3x+3}+\frac{1}{x^2+3x+5x+15}+\frac{1}{x^2+7x+5x+35}=\frac{1}{9}\)=1/9
\(\frac{1}{x\left(x+1\right)+3\left(x+1\right)}+\frac{1}{x\left(x+3\right)+5\left(x+3\right)}+\frac{1}{x\left(x+7\right)+5\left(x+7\right)}=\frac{1}{9}\)
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{1}{9}\)
nhân cả 2 vế với 2 ta được
\(\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}=\frac{2}{9}\)
\(< =>\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}=\frac{2}{9}\)
\(< =>\frac{1}{x+1}-\frac{1}{x+7}=\frac{2}{9}\)
\(< =>\frac{\left(x+7\right)-\left(x+1\right)}{\left(x+1\right)\left(x+7\right)}=\frac{2}{9}\)
\(< =>\frac{6}{x^2+8x+7}=\frac{2}{9}\)
\(=>6.9=2x^2+16x+14\)
\(< =>2x^2+16x+14-54=0\)
\(< =>2\left(x^2+8x-20\right)=0\)
\(< =>x^2+8x-20=0\)
\(< =>x^2+10x-2x-20=0\)
\(< =>x\left(x+10\right)-2\left(x+10\right)=0\)
\(< =>\left(x-2\right)\left(x+10\right)=0\)
\(=>\hept{\begin{cases}x-2=0\\x+10=0\end{cases}< =>\hept{\begin{cases}x=2\\x=-10\end{cases}}}\)(thỏa mãn ĐKXĐ)