K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:a, - 120x5y4 b, 60x6y2 c, -5x15y3Bài 2: Điền đơn thức thích hợp vào chỗ trống:a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5Bài 3: Thu gọn các đơn thức sau:a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I...
Đọc tiếp

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:
a, - 120x5y4 b, 60x6y2 c, -5x15y3
Bài 2: Điền đơn thức thích hợp vào chỗ trống:
a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5
Bài 3: Thu gọn các đơn thức sau:
a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2
d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2
Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I là trung điểm của BC. Vẽ đường trung trực của cạnh BC cấtC tại D. Trên tia đối của tia AC lấy điểm E sao cho AE = AD. Gọi F là giao điểm của BE và đường thẳng AI. Chứng minh :
a, CD = BE; b, Góc BEC = 2. góc BEC
c, Tam giác AEF cân d, AC=BF
Bài 5: Cho tam giác ABC có góc A bằng 90o và BD là đường phân giác. Trên BC lấy điểm E sao cho BE = BA
a, Chứng minh AD = DE và BD là đường trung trực của đoạn thẳng AE
b, Kẻ AH vuông góc với BC. Chứng minh: AE là tia phân giác của góc HAC
c, Chứng minh AD<CD
d, Gọi tia Cx là tia đối của tia CB. Tia phân giác của góc Acx cắt đường thẳng BD tại K. Tính số đo góc BAK
Bài 6: Cho tam giác abc cân tại a, đường phân giác của góc b cắt ac tại M.
Kẻ me vuông góc với bc ( e thuộc bc). đường thẳng em cắt ba tại I
a, chứng minh tam giác abm = tam giác ebm
b, chứng minh bm là đường trung trực của ae
c, so sánh am và mc
d, chứng minh tam giác BCI cân

0
19 tháng 1 2017

1. A B C D F 1 2 2 1 1 2. A B H D M C

1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C

\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)

\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)

\(\Delta DFC\)\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD

2.Theo chứng minh câu 1,ta được BD < CD

\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)

=> D nằm giữa B,M => AD nằm giữa AB,AM (1)

\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)

\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)

\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)

=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm

3 tháng 8 2018

làm như ngu

13 tháng 6 2018

K C B A D H

a) Xét tam giác ABD và tam giác HBD có :

\(\widehat{BAD}=\widehat{BHD}\left(=90^o\right)\)

\(\widehat{ABD}=\widehat{HBD}\)( BD là tia phân giác )

Chung BD

\(\Rightarrow\) tam giác ABD = tam giác HBD ( ch-gn )

\(\Rightarrow AD=DH\left(đpcm\right)\)

b) Xét tam giác DHC vuông tại H có  \(DC>DH\)( trong tam giác vuông cạnh huyền là cạnh dài nhất )

Mà  \(AD=DH\)( câu a )

\(\Rightarrow AD< CD\)

c)  \(\widehat{ABC}=180^o-90^o-30^o=60^o\)

Ta có BD là tia phân giác  \(\widehat{ABC\Rightarrow}\widehat{ABD}=\widehat{CBD}=\frac{60^o}{2}=30^o\)

Xét tam giác BDC có  \(\widehat{DBC}=\widehat{DCB}\left(=30^o\right)\)

\(\Rightarrow\)tam giác BDC cân tại D

Mà DH là đường cao  \(\left(DH\perp BC\right)\)

\(\Rightarrow\)DH cũng là đường trung tuyến tam giác BDC

\(\Rightarrow BH=HC\)

Xét tam giác KBH và tam giác KCH có :

\(\widehat{KHB}=\widehat{KHC}\left(=90^o\right)\)

BH = HC

Chung KH

\(\Rightarrow\)tam giác KBH = tam giác KCH ( c-g-c ) (1)

\(\Rightarrow\hept{\begin{cases}KB=KC\\\widehat{KBH}=\widehat{KCH}\left(=60^o\right)\end{cases}}\Leftrightarrow\Delta KBC\) đều

\(\Rightarrow\widehat{BKC}=60^o\)

Từ (1)  \(\Rightarrow\widehat{BKH}=\widehat{CKH}\)

\(\Rightarrow\widehat{BKH}=30^o\)

Xét tam giác BDK có  \(\widehat{DBK}=\widehat{BKD}\left(=30^o\right)\)

\(\Rightarrow\Delta BDK\)cân tại D

Mà AD là đường cao  \(\left(AD\perp BK\right)\)

\(\Rightarrow\)AD là trung tuyến tam giác BDK

\(\Rightarrow BA=AK\)

Xét  \(\Delta KBC\)

KH là trung tuyến ( BH = HC )

CA là trung tuyến ( BA = AK )

KH và CA cắt nhau tại D

\(\Rightarrow\)D là trọng tâm tam giác BKC

d) Ta có  \(\frac{KB}{2}=AK\)( do AB = AK )

\(AD+AK>\frac{KB}{2}\)

Mà KC = KB

\(\Rightarrow AD+AK>\frac{KC}{2}\left(đpcm\right)\)

Vậy ...

11 tháng 7 2015

Nhiều quá, chắc không làm nổi

19 tháng 7 2015

làm xong có lẹ mk thành thần đất sét mất rồi