\(\frac{1}{2}<\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)với n là số tự nh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2015

câu 2: gọi là A đi.

bước 1: A>1

ta có: \(\frac{e}{d+f}>\frac{e}{d+e+f}\) (khi cùng tử, mẫu càng lớn thì p/s càng nhỏ)

tương tự thì: \(A>\frac{e}{d+f+e}+\frac{d}{d+e+f}+\frac{f}{d+e+f}=\frac{e+d+f}{d+e+f}=1\Rightarrow A>1\)

bước 2: A<2

ta có: nếu a>b thì \(\frac{a}{b}>\frac{a+m}{b+m}\); nếu a<b thì \(\frac{a}{b}<\frac{a+m}{b+m}\)

vì: d,e,g là 3 cạnh 1 tam giác => d+f>e => \(\frac{e}{d+f}<\frac{e}{d+f}+1=\frac{e+e}{d+f+e}=\frac{2e}{d+f+e}\)

tương tự thì: \(A<\frac{2e}{d+e+f}+\frac{2d}{d+e+f}+\frac{2f}{d+e+f}=\frac{2\left(d+e+f\right)}{d+e+f}=2\)

vậy là xong nha

5 tháng 7 2015

2/ d/e+f  +e/f+d +f/d+e>d/e+f+d  + e/f+d+e +f/d+e+f =d+e+f/d+e+f=1(1)

d/e+f  + e/f+d + f/d+e <2d/e+f+d  +2e/d+f+e + 2f/d+e+f  = 2(d+e+f)/d+e+f =2 (2)

từ 1 và 3 =>đpcm

5 tháng 7 2015

\(\frac{1}{n+1}+\frac{1}{n+1}+...+\frac{1}{2n}<\frac{1}{2n}+\frac{1}{2n}+...+\frac{1}{2n}\text{ (}n\text{ số)}=n.\frac{1}{2n}=\frac{1}{2}\)

5 tháng 7 2015

mình chỉ làm được bài 2 thôi. bạn có L I K E k để mình làm?

11 tháng 1 2016

1.  Có \(\frac{1}{2n}<\frac{1}{2n-1}<....<\frac{1}{n}\)

=>\(\frac{n}{2n}<\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)

(Vì từ n+1 đến 2n có n số hạng)

=> dpcm

2 tháng 3 2017

Áp dụng bất đẳng thức Nesbitt với 3 số dương d,e,f ta có: \(\frac{d}{e+f}+\frac{e}{d+f}+\frac{f}{d+e}\ge\frac{3}{2}\)

Dấu "=" xảy ra khi d=e=f

2 tháng 3 2017

Chứng minh rằng \(\frac{d}{e+f}+\frac{e}{d+f}+\frac{f}{d+e}\ge\frac{3}{2}\)\(\forall d,e,f>0\)

\(\Rightarrow\frac{d}{e+f}+1+\frac{e}{d+f}+1+\frac{f}{d+e}+1\ge\frac{9}{2}\)

\(\Rightarrow\frac{d+e+f}{e+f}+\frac{d+e+f}{d+f}+\frac{d+e+f}{d+e}\ge\frac{9}{2}\)

\(\Rightarrow\left(d+e+f\right)\left(\frac{1}{e+f}+\frac{1}{d+f}+\frac{1}{d+e}\right)\ge\frac{9}{2}\)

\(\Rightarrow2\left(d+e+f\right)\left(\frac{1}{e+f}+\frac{1}{d+f}+\frac{1}{d+e}\right)\ge9\)

\(\Rightarrow\left(e+f+d+f+d+e\right)\left(\frac{1}{e+f}+\frac{1}{d+f}+\frac{1}{d+e}\right)\ge9\)

Áp dụng bất đẳng thức Cauchy 

\(\Rightarrow\left(e+f+d+f+d+e\right)\left(\frac{1}{e+f}+\frac{1}{d+f}+\frac{1}{d+e}\right)\ge9\sqrt[3]{\left(e+f\right)\left(d+f\right)\left(d+e\right).\frac{1}{\left(e+f\right)\left(d+f\right)\left(d+e\right)}}=9\)

Vậy ta có đpcm 

Dấu " = " xảy ra khi \(e=d=f\) ( đpcm )

13 tháng 11 2018

\(\frac{20102011}{2012}=9991+\frac{119}{2012}=9991+\frac{1}{\frac{2012}{119}}=9991+\frac{1}{16+\frac{108}{119}}=9991+\frac{1}{16+\frac{1}{\frac{119}{108}}}\)

\(=9991+\frac{1}{16+\frac{1}{1+\frac{11}{108}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{\frac{108}{11}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{9}{11}}}}\)

=\(=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{\frac{11}{9}}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{2}{9}}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{1}{4+\frac{1}{2}}}}}}\)

14 tháng 11 2018

Nguyễn Thị Linh Chi có thể hướng dẫn cho mình cụ thể chút nữa được không.

Làm sao để \(\frac{20102011}{2012}\)=9991+\(\frac{119}{2012}\)vậy bạn?

(giúp mik nhé, mik cảm ơn nha!)

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

18 tháng 6 2020

a, (x-5).(x-1) >0
<=> x-5>0 và x-1>0
<=> x-5>0
<=> x>5
x-1>0
<=> x>1
Vậy x>5
b, (2x-3).(x+1) <0
<=> 2x-3<0 và x+1<0
2x-3<0 <=> 2x<3 <=> x<2/3
x+1<0 <=> x<-1
Vậy x<2/3
c, 2x2 - 3x +1>0
<=> 2x2 - 2x- x +1>0
<=>(x-1). (2x-1) >0
<=> x-1>0 và 2x-1>0
x-1>0 <=> x>1
2x-1>0 <=> 2x>1 <=> x>1/2
Vậy x>1/2

20 tháng 5 2019

gọi A là vế trái của bất đẳng thức trên

Ta có : \(\frac{1}{k^3}< \frac{1}{k^3-k}=\frac{1}{k.\left(k-1\right)\left(k+1\right)}\)

Do đó : A < \(\frac{1}{2^3-2}+\frac{1}{3^3-3}+...+\frac{1}{n^3-n}=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

Đặt C = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

Ta thấy \(\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}=\frac{2}{\left(n-1\right)n\left(n+1\right)}\)

nên 

C = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{4}-\frac{1}{2n\left(n+1\right)}< \frac{1}{4}\)

Vậy ....

26 tháng 9 2024

a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\) 

A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\)

A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))

Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)

nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))

A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)

 

14 tháng 4 2018

\(a,2x-6< 0\Leftrightarrow2x>6\Leftrightarrow x>3\)

\(b,5x+2x< 4+25\Leftrightarrow7x< 29\Leftrightarrow x< \frac{29}{7}\)

\(c,-5x+6>8-10+8x\Leftrightarrow-5x-8x>8-10-6\)

\(-13x>-8\Leftrightarrow x< \frac{8}{13}\)

\(d,3x-12\le2-4x\Leftrightarrow3x+4x\le2+12\)

\(\Leftrightarrow7x\le14\Leftrightarrow x\le2\)

\(e,\frac{3\left(x-3\right)}{6}>\frac{2\left(2x-5\right)}{6}+\frac{6}{6}\Rightarrow3x-9>4x-10+6\)

\(\Leftrightarrow3x-4x>-4+9\Leftrightarrow x>-5\)

\(f,3\left(2x-3\right)>1+2\left(2+2x\right)\Leftrightarrow6x-9>1+4+4x\)

\(6x-4x>14\Leftrightarrow2x>14\Leftrightarrow x>7\)

Tự biểu diễn nha!