Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(2x^2+3x\Leftrightarrow x\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-3}{2}\end{matrix}\right.\)
vậy mệnh đề này đúng
b) ta có số nguyên có 2 dạng :
+) \(x=2a\Rightarrow x^2=4x^2⋮2\) \(\Rightarrow x=2a\) là thỏa mãn
+) \(x=2a+1\Rightarrow x^2=4a^2+4a+1⋮̸2\) \(\Rightarrow x=2a+1\) là không thỏa mãn
\(\Rightarrow x=2a⋮2\)
vậy mệnh đề này đúng
c) ta có : vì phương trình \(X^2-aX+\left(a-1\right)\)
có : \(\Delta=a^2-4\left(a-1\right)=a^2-4a+4=\left(a-2\right)^2\ge0\)
luôn có nghiệm \(\Rightarrow\) \(x+y+xy\) có thể bằng \(-1\)
\(\Rightarrow\) mệnh đề này sai
d) cái này thì theo fetmat thì phải .
\(\Rightarrow n=2\) là duy nhất
\(\Rightarrow\) mệnh đề này đúng
vậy có \(3\) mệnh đề đúng
Cho: \(x\ne-1\)và \(y\ne-1\)
g/s: \(x+y+xy=-1\)
<=> \(\left(x+xy\right)+\left(y+1\right)=0\)
<=> \(\left(x+1\right)\left(y+1\right)=0\)
<=> \(\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\) vô lí vì trái với gỉa thiết
Vậy \(x\ne-1\)và \(y\ne-1\) thì \(x+y+xy\ne-1\)
PTHĐGD là:
(2m-2)x+1-2m=1/2(1-m)x+3/2(1-m)
=>\(\Leftrightarrow x\left(2m-2-\dfrac{1}{2\left(1-m\right)}\right)=\dfrac{3}{2\left(1-m\right)}-1+2m\)
\(\Leftrightarrow x\cdot\left(\dfrac{4\left(m-1\right)\left(m-1\right)+1}{2\left(m-1\right)}\right)=\dfrac{3+2\left(1-m\right)\left(-1+2m\right)}{2\left(1-m\right)}\)
\(\Leftrightarrow x\cdot\dfrac{4m^2-8m+4+1}{2\left(m-1\right)}=\dfrac{3+\left(2-2m\right)\left(2m-1\right)}{2\left(1-m\right)}\)
\(\Leftrightarrow x=\dfrac{3-4m-2-4m^2+2m}{4m^2-8m+4}=\dfrac{-4m^2-2m+1}{4m^2-8m+4}\)
=>\(y=\left(2m-2\right)\cdot\dfrac{-4m^2-2m+1}{4\left(m-1\right)^2}+1-2m\)
\(=\dfrac{2\left(m-1\right)\left(-4m^2-2m+1\right)}{4\left(m-1\right)^2}+1-2m\)
\(=\dfrac{-4m^2-2m+1}{2\left(m-1\right)}+\left(-2m+1\right)\)
\(=\dfrac{-4m^2-2m+1+\left(-2m+1\right)\cdot\left(2m-2\right)}{2\left(m-1\right)}\)
\(=\dfrac{-4m^2-2m+1-4m^2+4m-2m+2}{2\left(m-1\right)}\)
\(=\dfrac{-8m^2+3}{2\left(m-1\right)}\)
Với n=1 ta có : \(1^3+3\cdot1^2+5\cdot1=9⋮3\)
Vậy khẳng định đúng với n=1.
Giả sử khẳng định đúng với n=m ta có \(\left(m^3+3m^2+5m\right)⋮3\)
Ta phải chứng minh khẳng định đúng với n=m+1 nghĩa là:
\(\left(\left(m+1\right)^3+3\left(m+1\right)^2+5\left(m+1\right)\right)⋮3\)
\(\Leftrightarrow\left(m^3+6m^2+14m+9\right)⋮3\)
\(\Leftrightarrow\left(\left(m^3+3m^2+5m\right)+\left(3m^2+9m+9\right)\right)⋮3\)
Mà \(\left(m^3+3m^2+5m\right)⋮3\)
\(3m^2+9m+9=3\left(m^2+3m+3\right)⋮3\)
Do đó khẳng định đúng với n=m+1.
Vậy khẳng định đúng \(\forall n\ge1,n\inℕ\)
\(\forall n\ge1,n\in N\)
Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n=n\left(n+1\right)\left(n+2\right)+3n\)
Vì n(n+1) (n+2) tích của 3 số tự nhiên liên tiếp
=> n( n+1) (n+2) chia hết cho 3
và 3n c hia hết cho 3
=> \(n^3+3n^2+5n\) chia hết cho 3
Câu 1:
Bạn vẽ trục số 1 cái trên 1 cái dưới cho dễ tưởng tượng
Khi đó, để \(A\cap B=\oslash\) thì có 2 khả năng xảy ra:
\(n\leq -5\) hoặc \(n-2>9\Leftrightarrow n> 11\)
Vậy $n\leq -5$ hoặc $n> 11$
Ngược lại. Để \(A\cap B\neq \oslash\) thì \(n> -5\) hoặc $n< 11$
Câu 2:
Tương tự câu 1: Để \(M\cap N\neq \oslash \Rightarrow m+1\leq 1\) hoặc \(m\geq 3\)
Hay \(m\leq 0\) hoặc $m\geq 3$
Câu 3:
Để \(A\cap B\neq \oslash \) thì \(x+2\leq 2\) hoặc $x\geq 5$
hay \(x\leq 0\) hoặc $x\leq 5$
a, Biến đổi ta được E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
b, Ta có E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) = \(1+\dfrac{4}{\sqrt{x}-3}\) .
. Nếu x không là số chính phương thì \(\sqrt{x}\) là số vô tỉ . Suy ra E là số vô tỉ ( loại )
. Nếu x là số chính phươn thì \(\sqrt{x}\) là số nguyên nên để E có giá trị nguyên thì \(4⋮\left(\sqrt{x}-3\right)\) .
Mà \(\sqrt{x}-3\ge-3\) nên \(\left(\sqrt{x}-3\right)\in\left\{-2;-1;1;2;4\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)
Kết hợp với ĐKXĐ ta được x = 1 ; 16 ; 25 ; 49
1.\(\forall n\ge1,có:n^3+3n^2+5n=n^3-n+6n+3n^2=\left(n-1\right)n\left(n+1\right)+6n+3n^2⋮3\)