Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{\sqrt{2017\left(x-2015\right)}}{\sqrt{2017}\left(x+2\right)}+\frac{\sqrt{2016\left(x-2016\right)}}{\sqrt{2016}x}\le\frac{1}{2\sqrt{2017}}+\frac{1}{2\sqrt{2016}}\)
"=" \(\Leftrightarrow\)\(x=4032\)
Áp dụng BĐT BSC và BĐT \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\):
\(A=x\sqrt{y+1}+y\sqrt{x+1}\)
\(\Rightarrow A^2=\left(x\sqrt{y+1}+y\sqrt{x+1}\right)^2\)
\(\le\left(x^2+y^2\right)\left(x+y+2\right)\)
\(\le\left(x^2+y^2\right)\left[\sqrt{2\left(x^2+y^2\right)}+2\right]=\sqrt{2}+2\)
\(\Rightarrow-\sqrt{\sqrt{2}+2}\le A\le\sqrt{\sqrt{2}+2}\)
\(\Rightarrow minA=\sqrt{\sqrt{2}+2}\Leftrightarrow x=y=-\dfrac{1}{\sqrt{2}}\)
Theo giả thiết ta có : \(x+yz=yz-z-1=\left(z-1\right)\left(y+1\right)=\left(x+y\right)\left(y+1\right)\)
Tương tự : \(y+zx=\left(x+y\right)\left(x+1\right)\)
Và \(z+xy=\left(x+1\right)\left(y+1\right)\)
Nên \(P=\frac{x}{\left(x+y\right)\left(y+1\right)}+\frac{y}{\left(x+y\right)\left(x+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)
\(=\frac{x^2+y^2+x+y}{\left(x+y\right)\left(x+1\right)\left(y+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)
Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\left(x+1\right)\left(y+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)
nên \(P\ge\frac{2\left(x+y\right)^2+4\left(x+y\right)}{\left(x+y+2\right)^2\left(x+y\right)}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}=\frac{2\left(x+y\right)+4}{\left(x+y+2\right)^2}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}\)
\(=\frac{2}{z+1}+\frac{4\left(z^2+2\right)}{\left(z+1\right)^2}=f\left(z\right);z>1\)
Lập bảng biến thiên ta được \(f\left(z\right)\ge\frac{13}{4}\) hay min \(P=\frac{13}{4}\) khi \(\begin{cases}z=3\\x=y=1\end{cases}\)
Áp dụng bất đẳng thức Cauchy
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\)
\(M\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+xz\right)}+\frac{7}{xy+yz+zx}\)
Áp dụng BĐT Cauchy - Schwarz :
\(\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}\ge\frac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)
và \(\frac{7}{xy+yz+xz}\ge\frac{7}{\frac{1}{3}\left(x+y+z\right)^2}=21\)
\(\Rightarrow M\ge9+21=30\)
Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng BĐT Cauchy schwarz ta có:
\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
\(\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}\)
\(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{7}{2\left(xy+yz+zx\right)}\)
\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{\frac{2\left(x+y+z\right)^2}{3}}=30\)
Đẳng thức xảy ra tại x=y=z=1/3
2)
A)A=|x-2017|+|x-17|
ta có A= \(\left|x-2017\right|+\left|x-17\right|=\left|x-2017\right|+\left|17-x\right|\)
\(\ge\left|x-2017+17-x\right|=\left|-2000\right|=2000\)
vậy A\(\ge2000\)
=>GTNN của A là 2000 khi x-2017 và x-17 cùng dấu
=> \(\left[{}\begin{matrix}x-2017\ge0\\x-17\ge0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x\ge2017\\x\ge17\end{matrix}\right.\)
hoặc
=>\(\left[{}\begin{matrix}x-2017\le0\\x-17\le0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x\le2017\\x\le17\end{matrix}\right.\)
=>17\(\le x\le2017\)