K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

Ta co:

\(\text{ }P=\Sigma_{cyc}\frac{ab}{2016-c}=\Sigma_{cyc}\frac{ab}{a+b}\le\Sigma_{cyc}\frac{\frac{\left(a+b\right)^2}{4}}{a+b}=\Sigma_{cyc}\frac{a+b}{4}=1008\)

Dau '=' xay ra khi \(a=b=c=672\)

7 tháng 3 2021

c1:áp dụng bđt AM-GM:

\(a+b\ge2\sqrt{ab}\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2=1008^2\)

=> đáp án A

c2: tương tự c1 . đáp án b

NV
8 tháng 3 2021

3.

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)

Đáp án A

4.

\(a^2-a+1=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) ;\(\forall a\)

Đáp án A

26 tháng 3 2019

Cauchy-SChwarz:

\(VT=\sum_{cyc}\frac{ab}{a^2+ab+bc}\le\frac{\sum_{cyc}\left(a^2b^2+ab^2c+abc^2\right)}{\left(ab+bc+ca\right)^2}=\frac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\)

Dau "=" khi a=b=c\(\in R^+\)

26 tháng 3 2019
https://i.imgur.com/aoZcTcQ.jpg
18 tháng 8 2019

a) Giả sử:

\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow\frac{a^2+2ab+b^2}{4}\ge ab\)

\(\Rightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)

\(\Rightarrow\frac{\left(a-b\right)^2}{4}\ge0\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng )

=> đpcm

b, Bất đẳng thức Cauchy cho các cặp số dương \(\frac{bc}{a}\)và \(\frac{ca}{b};\frac{bc}{a}\)và \(\frac{ab}{c};\frac{ca}{b}\)và \(\frac{ab}{c}\)

Ta lần lượt có : \(\frac{bc}{a}+\frac{ca}{b}\ge\sqrt[2]{\frac{bc}{a}.\frac{ca}{b}}=2c;\frac{bc}{a}+\frac{ab}{c}\ge\sqrt[2]{\frac{bc}{a}.\frac{ab}{c}}=2b;\frac{ca}{b}+\frac{ab}{c}\ge\sqrt[2]{\frac{ca}{b}.\frac{ab}{c}}\)

Cộng từng vế ta đc bất đẳng thức cần chứng minh . Dấu ''='' xảy ra khi \(a=b=c\)

c, Với các số dương \(3a\) và \(5b\), Theo bất đẳng thức Cauchy ta có \(\frac{3a+5b}{2}\ge\sqrt{3a.5b}\)

\(\Leftrightarrow\left(3a+5b\right)^2\ge4.15P\)( Vì \(P=a.b\)

\(\Leftrightarrow12^2\ge60P\)\(\Leftrightarrow P\le\frac{12}{5}\Rightarrow maxP=\frac{12}{5}\)

Dấu ''='' xảy ra khi \(3a=5b=12:2\)

\(\Leftrightarrow a=2;b=\frac{6}{5}\)

5 tháng 6 2020

\(y=\frac{\sqrt{2017\left(x-2015\right)}}{\sqrt{2017}\left(x+2\right)}+\frac{\sqrt{2016\left(x-2016\right)}}{\sqrt{2016}x}\le\frac{1}{2\sqrt{2017}}+\frac{1}{2\sqrt{2016}}\)

"=" \(\Leftrightarrow\)\(x=4032\)

20 tháng 8 2016

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)

\(\Rightarrow\)\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)\(\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)=\(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(1)

Tương tự ta có: \(\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(2)

\(\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(3)

Cộng theo vế của (1);(2)&(3) ta đc:

A\(\le1\)

Dấu''='' xảy ra\(\Leftrightarrow\)a=b=c

 

21 tháng 8 2016

Thanks nha, cách giải hay quớ