Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ngày mai mình sẽ làm tiếp các câu còn lại.
Câu 1 ( hai số nguyên tố cùng nhau có ƯCLN là 1)
a) Gọi hai số lẻ liên tiếp là a và a + 2
Giả sử a + 2 và a cùng chia hết cho số nguyên tố p (p > 1)
Vì a + 2 chia hết cho p và a chia hết cho p
Suy ra a + 2 - a = 2 chia hết cho p
2 chia hết cho p thì p là ước của 2
Ư (2) = 2 (ở đây không có số 1 vì p > 1)
Mà a + 2 và a đều là số lẻ nên a và a + 2 không thể chia hết 2
Vì a và a + 2 không chia hết cho 2 Suy ra p = 1
Mà p = 1 thì giả sử sai
Giả sử sai
=> ĐPCM
1,
a , gọi hai số lẻ liên tiếp là 2k+1; 2k+3 với k thuộc tập hợp N
gọi ƯCLN (2k+1;2k+3)là d với d thuộc tập hợp N*
suy ra 2k+1 chia hết cho d
2k+3 chia hết cho d
suy ra :(2k+3)-(2k+1) chia hết cho d
(2k-2k) +(3-1) chia hết cho d
0+2 chia hết cho d
suy ra 2chia hết cho d
suy ra d thuộc tập hợp Ư (2)={1;2}
mà 2k+1 ko chia hết cho 2
2k+3 ko chia hết cho 2
suy ra d=1
vậy ƯCLN(2k+1;2k+3) =1 suy ra hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
b, gọi ƯCLN (2n+5;2n+7)là d với d thuộc tập hợp N*
suy ra 2n+5 chia hết cho d
2n+7 chia hết cho d
suy ra (2n+7)-(2n+5) chia hết cho d
(2n-2n)+(7-5)
0+2 chia hết cho d
suy ra 2 chia hết cho d
là như câu a
4)
Gọi 2 số tự nhiên đó là a và b ( a > b )
Ta có :
ƯCLN ( a , b ) = 15
=> a = 15m và b = 15n ( m > n ; m và n là 2 số nguyên tố cùng nhau ) (1)
Do a - b = 15m - 15n = 15 . ( m - n ) = 90
=> m - n = 6 (2)
Do b < a < 200 nên n < m < 13 (3)
Từ (1) ; (2) ; (3)
=> ( m ; n ) \(\in\)( 7 ; 1 ) ; ( 11 ; 5 )
=> ( a ; b ) \(\in\)( 105 ; 15 ) ; ( 165 ; 75
Bài 1:
1) Gọi 2 số tự ngiên lẻ liên tiếp là : 2k+1 , 2k+3 (k thuộc N)
Gọi d là UCLN của 2k+1 , 2k+3
=> \(\hept{\begin{cases}2k+1⋮d\\2k+3⋮d\end{cases}}\)
=> \(\left(2k+3\right)-\left(2k+1\right) ⋮d\)
=> \(2⋮d\)
=> \(d\in\left\{1;2\right\}\) mà d là UCLN của 2 số lẻ nên d khác 2
=> d=1
=> đpcm
Câu b tương tự
câu 2: ta có 12+11+10+9+8+...+x=12
=> 11+10+9+8+...+x=0 (1)
=> (1) = (11+x).n :2=0 ( trong đó n là số số hạng của tổng)
=>(11+x).n=0
mà n khác 0 =>11+x=0=>x=-11
vậy x= -11
4/ Gọi số HS là a (a thuộc N, 300 < a < 400)
Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS hay a : 12, 15, 18 dư 9 => (a - 9) chia hết cho 12, 15, 18 => a - 9 là BC(12,15,18)
12 = 2 mũ 2 x 3 ; 15 = 3 x 5 ; 18 = 2 x 3 mũ 2
Thừa số nguyên tố chung và riêng: 2, 3, 5
BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180
=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }
=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }
Mà 300 < a < 400 => a - 9 = 360
a = 360 + 9
a = 369
Bài 1: a, \(-\frac{5}{6}+\frac{8}{3}+\frac{-29}{6}\le x\le\frac{-1}{2}+2+\frac{5}{2}\)
\(\Rightarrow\frac{-5}{6}+\frac{16}{6}+\frac{-29}{6}\le x\le\frac{-1}{2}+\frac{4}{2}+\frac{5}{2}\)
\(\Rightarrow\frac{-18}{6}\le x\le\frac{8}{2}\Rightarrow-3\le x\le4\Rightarrow x=\left\{\pm3;\pm2;\pm1;0;4\right\}\)
b, \(\frac{2}{3}\) của \(-\frac{36}{7}\) là: \(\frac{-36}{7}\cdot\frac{2}{3}=\frac{-72}{21}=\frac{-24}{7}\)
Bài 3: Gọi số cần tìm là a, ta có:
a : 7 dư 4; a : 14 dư 11; a : 49 dư 46 => a + 3 chia hết cho 7; 14 và 49
=> a + 3 thuộc BC ( 7; 14; 49 )
Phân tích ra thừa số nguyên tố ta tính được BCNN ( 7; 14; 49 ) = 98
Mặt khác a nhỏ nhất => a + 3 nhỏ nhất => a + 3 là BCNN ( 7; 14; 49 ) và = 98
=> a = 98 - 3 => a = 95
_C1_
Tìm số tự nhiên a,biết rằng 398 chia a dư 38,còn 450 chia a dư 18
_C2_
Chứng minh rằng,các số sau đây nguyên tố cùng nhau:
a,hai số lẻ liên tiếp
b,2n+5 và 3n+7
_C3_
a,Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng:(a-1)x(a+4) chia hết cho 6
b,Chứng minh rằng,tích của 4 số tự nhiên liên tiếp chia hết cho 24
_C4_
ƯCLN(ước chung lớn nhất) của 2 số tự nhiên bằng 4.Số tự nhiên nhỏ là 8.Tìm số lớn
_C5_
Tìm n,sao cho:
a, n+4 chia hết cho n+1
b, n2+4 chia hết cho n+2
_Làm được bài nào thì làm,vậy thôi_
ban lam duoc het sao ban tra loi thu xem bai nay nhieu qua ban tra loi xong minh tra loi nho tra loi dung do