Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) thấy 60 chia hết cho 15 => 60n chia hết cho 15
45 chia hết cho 15 nhưng không chi hết cho 30
=> 60n+45 chia hết cho 15 nhưng không chia hết cho 30
b) ta có 3 số nguyên liên tiếp là a,a+1,a+2
tổng của 3 số nguyên liên tiếp này là a+a+1+a+2=3a+3 chia hết cho 3
d) vì khi chia 4 stn này cho 5 nhận các số dư khác nhau => 1 số là 5k+1, 1 số là 5n+2, 1 số là 5a+3, 1 số là 5b+4 (với k,n,a,b thuộc n)
=> tổng 4 stn này là 5k+1+5n+2+5a+3+5b+4= 5(k+n+a+b)+5 chia hết cho 5
Gọi 4 số N liên tiếp đó là
5n+1; 5n+2;5n+3 và 5n+4
Ta có : 5n+1 +5n+2+5n+3+5n+4 = 20n +(1+2+3+4) = 20n +10 chia hết cho 5 ( dpcm)
dễ mà bạn
vì 4 số tự nhiên liên tiếp không chia hết cho 5 và khi chia 5 được các số dư khác nhau nên số dư lần lượt là:1;2;3;4
các số đó là : (a+1)+(a+2)+(a+3)+(a+4)
=>4a+(1+2+3+4)
=>4a+10
vì 4a chia hết cho 5
10 cũng chia hết cho 5
nên 4 số tự nhiên liên tiếp không chia hết cho 5 và khi chia 5 được các số dư khác nhau sẽ chia hết cho 5
a)Ta gọi a;a+1;a+2 lần lượt là ba số tự nhiên liên tiếp.Tổng của chúng là:
a+(a+1)+(a+2)=a+a+1+a+2
=3xa+3
=3(a+1) chia hết cho 3
còn lại tương tự
1.Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Có: a+(a+1)+(a+2)=a+a+a+1+2=3a+3=3(a+1)\(⋮\) 3
Vậy ...
Gọi 5 số tự nhiên liên tiếp là a, a+1, a+2,a+3,a+4
Có : a+(a+1)+(a+2)+(a+3)+(a+4)= a+a+a+a+a+1+2+3+4=5a+10=5(a+2)\(⋮\) 5
Vậy ...
2.
+)Gọi 3 số chẵn liên tiếp là a, a+2,a+4
Có : a+(a+2)+(a+4)=a+a+a+2+4=3a+6
mà a là số chẵn nên 3a \(⋮\) 6
\(\Rightarrow\) 3a+6\(⋮\) 6
Vậy ....
+) ngược lại ý đầu
+)Gọi 5 số chẵn liên tiếp là a, a+2,a+4 , a-2,a-4
Có : a+(a+2)+(a+4)+(a-2)+(a-4)=a+a+a+a+a+2+4-2-4=5a
mà a là số chẵn nên 5a \(⋮\) 10
\(\Rightarrow\) 5a\(⋮\) 10
Vậy ....
+) ngược lại ý 3
1. Chứng minh rằng:
a. \(1005a+2100b⋮15,\forall a,b\inℕ\)
Ta có:
\(\left\{{}\begin{matrix}\left\{{}\begin{matrix}1005⋮3\\1005⋮5\end{matrix}\right.\\\left\{{}\begin{matrix}2100⋮3\\2100⋮5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}1005a⋮3\\1005a⋮5\end{matrix}\right.\\\left\{{}\begin{matrix}2100b⋮3\\2100b⋮5\end{matrix}\right.\end{matrix}\right.\)
Vì \(\left(3;5\right)=1\) suy ra:
\(\left\{{}\begin{matrix}1005a⋮15\\2100b⋮15\end{matrix}\right.\) \(\Rightarrow1005a+2100b⋮15,\forall a,b\inℕ\)
b.
3 số tự nhiên liên tiếp có dạng:
\(a;a+1;a+2;a\inℕ\)
Tổng 3 số tự nhiên liên tiếp là:
\(a+a+1+a+2=3a+3\\ =3\left(a+1\right)⋮3\left(đpcm\right)\)
c.
Bốn số liên tiếp có dạng:
\(a;a+1;a+2;a+3;a\inℕ\)
Tổng 4 số tự nhiên liên tiếp là:
\(a+a+1+a+2+a+3=4a+6\\ \)
\(\Rightarrow\left\{{}\begin{matrix}4a⋮4\\6⋮̸4\end{matrix}\right.\) \(4a+6⋮̸4\)
d.
5 số chẵn liên tiếp là:
\(2k;2k+2;2k+4;2k+6;2k+8;k\inℕ\)
Tổng 5 số chẵn liên tiếp là:
\(2k+2k+2+2k+4+2k+6+2k+8\\ =10k+20\\ =10\left(k+2\right)⋮10.đpcm\)
e.
5 số lẻ liên tiếp có dạng:
\(2k+1;2k+3;2k+5;2k+7;2k+9;k\inℕ\)
Tổng 5 số lẻ liên tiếp là:
\(2k+1+2k+3+2k+5+2k+7+2k+9\\ =10k+20+5=10\left(k+2\right)+5:10.dư.5\)
2.
Một số tự nhiên chia cho 5 có số dư có thể là 1;2;3 hoặc 4
Theo bài ra ta có 4 số tự nhiên thõa mãn bài toán có dạng:
\(5k+1;5k+2;5k+3;5k+4;k\inℕ\)
Tổng bốn số tự nhiên đã cho là:
\(5k+1+5k+2+5k+3+5k+4\\ =20k+10\\ =10\left(2k+1\right)⋮5\Rightarrowđpcm\)