K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔBAC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

=>ΔMAB cân tại M

mà góc ABM=60 độ

nên ΔMAB đều

b: Ta có: ΔMAB đều

mà BK là đường cao

nên K là trung điểm của AM

Xét tứ giác AHMB có MH//AB

nên AHMB là hình thang

mà góc MHA=90 độ

nên AHMBlà hình thang vuông

Xét ΔAMC có

H là trung điểm của AC

K là trung điểm của AM

Do đó: HK là đường trung bình

=>HK//BC

=>BKHClà hình thang

mà góc KBC=góc HCB

nên BKHC là hình thang cân

Xét tam giác AEC ta có :

AEC + ABC + ECB = 180 độ

=> AEC + ABC = 90 độ

=> ACE + ACB = 90 độ

Mà tam giác ABC đều (gt)

=> ABC =ACB

=> AEC = ACE 

=> Tam giác AEC cân tại A

=> AE = AC

Lại cm tương tự ta có :

=> Tam giác ACF cân tai C

=> AC = CF 

Mà tam giác ABC đều

=> AB = AC = BC 

=> AB = BC = AF= CF

=> A là trung điểm BE(1)

=> C là trung điểm BF(2)

Từ (1) và (2) => AC là đường trung bình của tam giác BEF

=> AC //EF

=> ACEF là hình thang 

Mà AE = CF (cmt)

=> ACEF là hình thang cân (dpcm)

29 tháng 6 2019

A B C F E 1 2 1 1 1

\(\Delta ABC\) đều => \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)\(AB=AC=BC\)

Xét \(\Delta ABF\) và \(\Delta CBE\) có: 

\(AB=BC\)

-\(\widehat{BAF}=\widehat{BCE}=90^o\)

\(\widehat{B}\) chung

=> \(\Delta ABF=\Delta CBE\left(g-c-g\right)\)

=> \(BE=BF\)=> \(\Delta BEF\) cân tại B=> \(\widehat{E}=\widehat{F}\)(1)

Ta có:\(\Delta BEF\)cân có \(\widehat{B}=60^o\)=> \(\Delta BEF\) đều=> \(\widehat{F}=60^o\). Mà \(\widehat{BCA}=60^o\)=>\(\widehat{F}=\widehat{BCA}\)( đồng vị) => \(AC//EF=>ACFE\) là hình thang (2)

Từ (1) và (2)=> \(ACFE\)là hình thang cân.

11 tháng 8 2016

Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết,  dhnb:dấu hiệu nhận biết,   đ/n:định nghĩa,   cmt:chứng minh trên,   t/c: tính chất

3. a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.

         tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.

mà góc EAC và góc ACB ở vị trí so le trong.

Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.

b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.

Có: góc ABC= 45 độ (cmt).

tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.

Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với                                                                                 cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]

                                                                         => AD vông góc với BC. [đây là điều thứu hai suy ra được]

Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.

Xét  tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)

                                                                                       12   +  12    =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.

12 tháng 10 2021

QUỲNH LỚP 7C TRƯỜNG VÕ NGUYÊN GIẤP HẢ

 

23 tháng 7 2018

I don't now

...............

.................

.