K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

1,Ta có luôn tồn tại một điểm K sao cho \(4\overrightarrow{AB}-\overrightarrow{AC}=3\overrightarrow{AK}\).(*) Thật vậy:

VT(*) = \(4\left(\overrightarrow{AK}+\overrightarrow{KB}\right)-\left(\overrightarrow{AK}+\overrightarrow{KC}\right)=3\overrightarrow{AK}+4\overrightarrow{KB}-\overrightarrow{KC}\) (**)

Từ (*) và (**) ta có : \(4\overrightarrow{KB}-\overrightarrow{KC}=\overrightarrow{0}\)\(4\overrightarrow{KB}=\overrightarrow{KC}\) ⇒ B nằm giữa K và C sao cho 4KB = KC= \(\dfrac{4}{3}\) .BC.

Khi đó ta có : \(\left|4\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{3AK}\right|=3AK\)

Ap dụng định lí Py-ta-go cho tam giác ABC vuông tại A ta được:

BC2= AB2 + AC2 ⇒BC = \(\sqrt{2^2+2^2}=2\sqrt{2}\)⇒ KC = \(\dfrac{4}{3}\).BC = \(\dfrac{4}{3}\). \(2\sqrt{2}\)

⇒KC = \(\dfrac{8\sqrt{2}}{3}\)

Ta có : tam giác ABC vuông cân tại A nên \(\widehat{ACB}=\widehat{ACK}=45^O\)

Ap dụng định lí cosin ta có : Trong tam giác ACK có

AK = \(\sqrt{AC^2+KC^2-2AK.KC.\cos\widehat{ACK}}=\sqrt{2^2+\left(\dfrac{8\sqrt{2}}{3}\right)^2-2.2.\dfrac{8\sqrt{2}}{3}.\cos45^O}=\dfrac{2\sqrt{17}}{3}\)

⇒3AK=2\(\sqrt{17}\)\(\left|4\overrightarrow{AB}-\overrightarrow{AC}\right|\)=2\(\sqrt{17}\)

VẬY.....................

21 tháng 8 2019

Câu 2: AM=3MB => vt AC + vt CM = 3vtMC + 3vtCB

<=>vtCM - 3vtMC = 3vtCB -vtAC

<=>vtCM = 1/4 vtCA + 3/4 vtCB

(Mk mới học Toán 10 nên có sai thì thông cảm nha!!!)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(BC = \frac{{AB}}{{\cos {{30}^o}}} = 3:\frac{{\sqrt 3 }}{2} = 2\sqrt 3 \); \(AC = BC.\sin \widehat {ABC} = 2\sqrt 3 .\sin {30^o} = \sqrt 3 .\)

\(\overrightarrow {BA} .\overrightarrow {BC}  = \left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|\cos (\overrightarrow {BA} ,\overrightarrow {BC} ) = 3.2\sqrt 3 .\cos \widehat {ABC} = 6\sqrt 3 .\cos {30^o} = 6\sqrt 3 .\frac{{\sqrt 3 }}{2} = 9.\)

\(\overrightarrow {CA} .\overrightarrow {CB}  = \left| {\overrightarrow {CA} } \right|.\left| {\overrightarrow {CB} } \right|\cos (\overrightarrow {CA} ,\overrightarrow {CB} ) = \sqrt 3 .2\sqrt 3 .\cos \widehat {ACB} = 6.\cos {60^o} = 6.\frac{1}{2} = 3.\)

28 tháng 10 2019

Đáp án C

6 tháng 10 2018

1) 6MK+ 4AB+ CB=0

6MK+ 4AM+ 4MB+ CM+ MB=0

4AK+ CK+ MK+ 5MB=0

4GC+ GA+ MA+ GC+ 5 MG+ 5GB=0

4GC+ MA+ 5MG+ 4GB=0

4GC+ 4GA+4GB=0

=> Thỏa mãn yêu cầu đề bài

6 tháng 10 2018

2)

* áp dụng tính chất đường phân giác chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy.

=> CD/AC=DB/AB

<=> 6CD= 8DB

=> 6 vectoCD= 8vectoDB

6CD+ 8BD=0

6CA+ 6AD+ 8 BA+ 8AD=0

14AD= 6AC+ 8AB

AD=3/7AC+ 4/7AB

* cũng áp dụng tính chất đường phân giác

EB/EC=AB/AC

8EB=6EC

=> 8 vecto EB= 6vecto EC

8EA+ 8AB= 6EA+ 6AC

2EA= 6AC- 8AB

EA= 3AC- 4AB

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Diện tích tam giác ABC: \(S = \frac{1}{2}ac.\sin B\)

Mà \(\widehat B = {135^o} \Rightarrow \sin B = \sin {135^o} = \frac{{\sqrt 2 }}{2}\).

\( \Rightarrow S = \frac{1}{2}ac.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{4}.ac\)

Chọn D

Câu 1: 

Gọi M là trung điểm của BC

=>BM=CM=3

\(AM=\sqrt{6^2-3^2}=3\sqrt{3}\)

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\cdot AM=6\sqrt{3}\)

Câu 2: 

b: \(\overrightarrow{AC}-\overrightarrow{AD}=\overrightarrow{DA}+\overrightarrow{AC}=\overrightarrow{DC}\)

=>|vecto AC-vecto AD|=DC=3a