Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â) Xét tứ giác PAOB , co :
\(\widehat{A}=90^o\) ( PA là tiếp tuyến )
\(\widehat{B}=90^o\)( PB là tiếp tuyến )
\(\widehat{A}+\widehat{B}=90^o+90^o=180^o\)
Vay : tứ giác PAOB nội tiếp ( vì có tổng số đo hai góc đối diện bằng 180o )
b) Xét \(\Delta PAEva\Delta PCA,co:\)
\(\widehat{P}\) là góc chung
\(\widehat{ACE}=\widehat{EAP}\) ( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung )
Do đó : \(\Delta PAE~\Delta PCA\)( g - g )
\(=>\frac{PA}{PE}=\frac{PC}{PA}\)
\(=>PA^2=PE.PC\)
c)
c, ta có góc APC=PCB (slt vì BC//PA)
mà góc PCB=PBE =1/2sđcungBE ( góc nội tiếp chắn cung BE và góc tạo bởi tia tiếp tuyến và dây cung BE)
suy ra góc APC=PBE
xét hai tam giác PIE và BIP có
góc I chung
góc IBE=IBP(cmt)
suy ra hai tam giác đó đồng dạng
suy ra PI/BI=IE/PI
suy ra PI^2=BI*IE (1)
xét hai tam giác AIE và BIA có
góc I chung
góc IAE=ABI=1/2sđ cung AE ( góc nội tiếp chắn cung AE và góc tạo bởi tia tiếp tuyến và dây cung AE)
suy ra hai tam giác đó đồng dạng
suy ra AI/BI=EI/AI
suy ra AI^2=BI*EI (2)
từ 1 và 2 suy ra PI=AI( đpcm)
a, Xét tứ giác ABDK có
^AKB = ^ADB = 900
mà 2 góc này kề, cùng nhìn cạnh AB
Vậy tứ giác ABDK là tứ giác nt 1 đường tròn
b, Ta có ^KBD = ^DAK ( góc nt chắn cung KE của tứ giác ABEH )
mà ^EAC = ^CBE ( góc nt chắn cung EC )
=> ^KBC = ^CBE
=> BC là tia pg ^HBE
a: Xét ΔEAB và ΔEBD có
góc EAB=góc EBD
góc AEB chung
=>ΔEAB đồng dạng với ΔEBD
b: ΔEAB đồng dạng với ΔEBD
=>EB^2=EA*ED
Xét ΔEPD và ΔEAP có
góc EPD=góc EAP
góc PED chung
=>ΔEPD đồng dạng với ΔEAP
=>EP^2=ED*EA=EB^2
=>EP=EB
=>AE là trung tuyến của ΔPAB
a) Ta có: BK \(\perp\)AC ; AD \(\perp\)BC
=> ^ADB = ^BKA = 90 độ
=> Tứ giác AKDB nội tiếp
=> ^KAH = ^DBH
Mà ^KAH = ^CAE = ^CBE = ^DBE
=> ^DBH = ^DBE
=> BD là tia phân giác ^HBE hay BC là tia phân giác ^HBE
b) Xét \(\Delta\)HBE có: BD là đường cao đồng thời là đường phân giác
=> \(\Delta\)HBE cân
=> BD là đường trung tuyến => D là trung điểm HE và HE vuông BC tại D
=> E và H đối xứng với nhau qua BC
a ) Ta có : \(BK\perp AC,AD\perp BC\Rightarrow\widehat{AKB}=\widehat{ADB}=90^0\)
\(\Rightarrow AKDB\) nội tiếp
\(\Rightarrow\widehat{EBC}=\widehat{EAC}=\widehat{DAK}=\widehat{KBD}=\widehat{HBD}\)
\(\Rightarrow BC\) là tia phân giác \(\widehat{HBE}\)
b ) Vì BC là tia phân giác \(\widehat{HBE},BD\perp AE\)
\(\Rightarrow\Delta BHE\) cân tại B
=> DH = DE
Lại có \(HE\perp BC\Rightarrow E,H\) đối xứng qua BC
Mk không hiểu đề bài 1 cho lắm !
cảm ơn bạn nhiều nhé