K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2022

undefined

a) Xét △ABD và △CBE có:

\(\widehat{ADB}=\widehat{BEC}=90^o\)

\(\widehat{B}chung\)

Nên △ABD ∼ △CBE(g.g)

b)Theo câu a, ta có: △ABD ∼ △CB E 

<=>\(\dfrac{AB}{BC}=\dfrac{BD}{BE}\Leftrightarrow AB.BE=BD.BC\)

c)Ta có:

\(BE=\dfrac{BD.BC}{AB}=\dfrac{3.12}{9}=4\left(cm\right)\)

 

9 tháng 5 2022

cảm ơn

 

31 tháng 3 2019

A B C D E 6 H

a) BC = \(\sqrt{AB^2+AC^2}\)\(\sqrt{6^2+8^2}\)\(\sqrt{100}\)= 10 (theo định lí Pythagoras)

\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)\(\frac{CD}{BC}\)\(\frac{AD}{DC}\)\(\frac{AB}{BC}\)\(\frac{6}{10}\)\(\frac{3}{5}\).

b) Ta có : \(\widehat{ABE}\)\(\widehat{EBC}\)(BD là phân giác)

=> \(\Delta ABD\)\(\Delta EBC\)(gg)

=> \(\frac{BD}{BC}\)\(\frac{AD}{EC}\)<=>  BD.EC = AD.BC (đpcm).

c) Ta có : \(\Delta CHE\)\(\Delta CEB\)( 2 tam giác vuông có chung góc C )

=> \(\frac{CH}{CE}\)\(\frac{CE}{CB}\)<=>  CH.CB = CE2                                                     (1)

                \(\Delta CDE\)\(\Delta BDA\)(gg  (2 góc đối đỉnh))

                 \(\Delta BDA~\Delta BCE\) (câu b))

=> \(\Delta CDE~\Delta BCE\)

=> \(\frac{CE}{BE}\)\(\frac{DE}{CE}\)<=> BE.DE = CE2                                                        (2)

Từ (1) và (2) => CH.CB = ED.EB (đpcm).

28 tháng 2 2020

A B C H D E F

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có AD là đường phân giác trong của tam giác ABC (gt)

\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\left(tc\right)\)

\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)

\(\Rightarrow\frac{BD}{3}=\frac{DC}{4}=\frac{BD+DC}{3+4}\frac{10}{7}\)(tính chất của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\\DC=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\end{cases}}\)

b)Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)

c) Xét tam giác ADB có DE là đường phân giác trong của tam giác ADB(gt)

\(\Rightarrow\frac{EA}{EB}=\frac{AD}{BD}\left(tc\right)\)

Xét tam giác ADC có DF là đường phân giác trong của tam giác ADC (gt)

\(\Rightarrow\frac{FC}{FA}=\frac{DC}{DA}\left(tc\right)\)

\(\Rightarrow\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{AD}{BD}.\frac{DB}{DC}.\frac{DC}{DA}=1\left(đpcm\right)\)

5 tháng 7 2020

Tự vẽ hình chỉ bt làm ý a,c, thôi thông cảm T^T

a,Xét ΔHAB và ΔABC

\(\widehat{BHA}=\widehat{BAH}=90^o\)

Góc B chung

\(\Rightarrow\Delta HBA\text{∼ }\Delta ABC\)

c,Xét ΔABC ta có:

BC2=AC2+AB2

BC2=162+122

BC2=400

BC=√400=20cm

Ta có ΔHAB~ΔABC(câu a)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)

\(\Rightarrow AH=\frac{12.16}{20}=9,6cm\)

a.Xét \(\Delta HBA\)và \(\Delta ABC\)

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{B}\) chung

Do đó \(\Delta HBA\)đồng dạng \(\Delta ABC\)\((\)g.g\()\)

b.Từ \(\Delta HBA\)đồng dạng \(\Delta ABC\)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow AH.BC=AB.AC\)

c.Xét \(\Delta ABC\),có \(\widehat{A}\)=90 độ , theo định lý py -ta -go,ta có

\(BC^2=AB^2+AC^2\)

\(BC^2=12^2+16^2\)

\(BC^2=400\)\(\Rightarrow BC=\sqrt{400}\)

\(BC=20cm\)

Ta có \(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)

\(\Rightarrow AH=\frac{12\times16}{20}\)

\(\Rightarrow AH=9,6cm\)

Chúc bạn học tốt.Phần d mình chưa giải đc nha

28 tháng 2 2021

A B C 9 12 D E

a, Xét tam giác ABC và tam giác EDC ta có : 

^C _ chung 

\(\frac{BC}{DC}=\frac{AC}{EC}\)

^BAE = ^CED = 90^0 

=> tam giác ABC ~ tam giác CED ( g.c.g ) 

HAB ? ^H ở đâu bạn ? 

b, Vì AD là tia phân giác tam giác ABC ta có : 

\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)

hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé 

c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét : 

\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính 

d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số 

20 tháng 4 2018

Vì DE la dg pg cua goc ADB (gt)

=.>AD/DB= AE/EB (h chat dg pg trong tam giac)   (1)

Vi DF la dg pg cua goc ADC (gt)

=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác)   (2)

tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1   (dpcm)

1 tháng 5 2018

Vì DE la dg pg cua goc ADB (gt)

=.>AD/DB= AE/EB (h chat dg pg trong tam giac)   (1)

Vi DF la dg pg cua goc ADC (gt)

=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác)   (2)

tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1   (dpcm)

29 tháng 4 2016

Áp dụng công thức mà làm nhé!

26 tháng 4 2019

A B C H

a) Xét tam giác HBA và tam giác ABC :

\(\widehat{AHB}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{ABC}\)chung

=> tam giác HBA \(~\)tam giác ABC ( đpcm )

b) Chứng minh tương tự câu a) ta có tam giác ABC \(~\)tam giác HAC

\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)

\(\Rightarrow AC^2=HC\cdot BC\)( đpcm )

c) Áp dụng đính lý Pytago vào tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)( cm )

Từ câu b) ta có : \(HC=\frac{AC^2}{BC}=\frac{20^2}{25}=16\)

Vậy....