K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

sai đề rồi , minh sử lại đề nha

CMR : AE = EB = AF = FC và tam giác ABF = tam giác ACE       

                                                   A B C F C

Ta có : \(AE=EB=\frac{1}{2}AB\)( E là trung điểm của AB )

\(AF=FC=\frac{1}{2}AC\)( F là trung điểm của AC )

mà \(AB=AC\left(gt\right)\)

\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\)

\(\Rightarrow AE=EB=AF=FC\)

Ta có : \(AB=AC\left(gt\right)\)

\(\Rightarrow\Delta ABC\)cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta ABF\)và \(\Delta CAE\)có :

              \(AE=AF\left(cmt\right)\)

                \(\widehat{A}\)chung

              \(AB=AC\left(gt\right)\)

\(\Rightarrow\Delta ABF=\Delta CAE\left(c.g.c\right)\)

Xét \(\Delta BEC\)và \(\Delta CFB\)có :

               \(BE=EC\left(cmt\right)\)

           \(\widehat{EBC}=\widehat{FCB}\left(cmt\right)\)

                  BC chung

\(\Rightarrow\Delta BEC=\Delta CFB\left(c.g.c\right)\)

4 tháng 12 2018

Tớ chứng minh phần a hơi ngược tí nhé ( cminh vế sau trước)

a) Ta có: AB = AE + EB;   AC = AF + FC

Mà AB = AC (gt)

      AE = AF (gt)

=>  EB = FC

Vì tam giác ABC có AB = AC => tam giác ABC cân tại A

=> góc B = góc C (tính chất tam giác cân)

Xét tam giác BEC và tam giác CFB có:

EB = FC (cmt)

góc B = góc C (cmt)

BC chung

=> tam giác BEC = tam giác CFB (c.g.c)

=> BF = CE (2 góc T.Ứ) ; => góc BEC = góc CFB

b)  C1: Xét tam giác IBE và tam giác ICF có:

IE = IF (gt)

góc BEC = góc CFB (cmt)

EB = FC (cmt)

=> tam giác IBE = tam giác ICF (c.g.c)

C2:  Ta có BF = IB + IF

                 CE = CI + IE

Mà BF = CE (cmt)

      IE = IF (gt)

=> IB = IC

Ta có góc BIE = góc CIF ( 2 góc đối đỉnh)

Xét tam giác IBE và tam giác ICF có:

IE = IF (gt)

góc BIE = góc CIF (cmt)

IB = IC (cmt)

=> tam giác IBE = tam giác ICF (c.g.c)

13 tháng 9 2021

EdeeS

4 tháng 12 2018

Giải :
Xét Δ ABF và Δ ACE có :
A là góc chung (gt)
AB = AC ( gt)
AE = AF ( gt)
=> Δ ABF= Δ ACE( c-g-c)
=> BF = CE ( 2 cạnh tương ứng ) ( đcpcm)

Tk mik nhak ^_^

29 tháng 11 2016

THANH TRÚC GIÚP MIK GIẢI ĐỐ

25 tháng 4 2017

Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
         b) tam giacd DBM=tam giác DEC

a) Mk nghĩ bn cheps sai đề bài rùi!!! Phải là c/m: tam giác ABD = tam giác ACD chứ!!

Xét \(\Delta ABD\)và \(\Delta ACD\)có:

     AB = AC (gt)

     \(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{A}\))

      AD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)

b) Mk nghĩ bn lại sai đề bài!!! Làm sao c/m đc EF = AD??!!!! Đáng lẽ ra phải là EF = BD ms đúng chứ!!!!

Xét \(\Delta AEF\)và \(\Delta ADB\)có:

      AE = AD (gt)

      \(\widehat{EAF}=\widehat{DAB}\)(2 góc đối đỉnh)

       AF = AB (gt)

\(\Rightarrow\Delta AEF=\Delta ADB\left(c.g.c\right)\)

=> EF = DB (2 cạnh tương ứng)

c) Ta có: AF = AB, mà AC = AB

=> AF = AC

Xét \(\Delta AHF\)và \(\Delta AHC\)có:

       AF = AC (cmt)

       AH là cạnh chung

       HF = HC (H là trung điểm của FC)

\(\Rightarrow\Delta AHF=\Delta AHC\left(c.c.c\right)\)

\(\Rightarrow\widehat{FAH}=\widehat{CAH}\)(2 góc tương ứng)

=> AH là tia phân giác của \(\widehat{CAF}\)

d) 

24 tháng 12 2021

Hmmmmmmmmm ko bik làm :)))))

15 tháng 5 2021

a) Xét ΔABD và ΔEBD có

BD là phân giác => góc ABD = góc EBD 

BD chung

Góc BAD = góc BED =90o

=> ΔABD = ΔEBD (ch-gn)

=>AD=ED(2 cạnh tương ứng)

b) xét ΔADF và ΔEDC có

Góc DAF= góc DEC=90o

AD=ED (cmt)

Góc ADF=EDC( đối đỉnh)

=>ΔADF = ΔEDC (gcg)

=> AF=EC(2 cạnh tương ứng)

c) ta có ΔABD = ΔEBD (cmt)

=> AB = EB (2 cạnh tương ứng)

=> ΔBAE cân tại B 

=> \(\widehat{BAE}=\widehat{BEA}=\)\(\dfrac{180 - \widehat{B}}{2}\)(1)

ta lại có AF=EC (cmt)

=> AB+AF=BE+EC

=> BF=BC

=> ΔBFC cân tại B 

=>\(\widehat{BFC}=\widehat{BCF}=\dfrac{180-\widehat{B}}{2}\)(2)

từ (1) và (2) => \(\widehat{BFC}\)=\(\widehat{BAE}\)  mà 2 góc ở vị trí đồng vị 

=> AE//FC

16 tháng 5 2021

cảm ơn ok