Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, x2-3x-1=0
Xét \(\Delta=9+4=13>0\)
=> PT luôn có 2 nghiệm phân biệt
Theo hệ thức Vi-et ta có \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-1\end{matrix}\right.\)
\(\Rightarrow y_1+y_2=\frac{x_1+x_2}{x_1x_2}=-3\)
\(y_1y_2=\frac{1}{x_1x_2}=-1\)
=> PT cần tìm là
\(\Rightarrow y^2-3x-1=0\)
2:
a: y1+y2=-(x1+x2)=-5
y1*y2=(-x1)(-x2)=x1x2=6
Phương trình cần tìm có dạng là;
x^2+5x+6=0
b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6
y1*y2=1/x1*1/x2=1/x1x2=1/6
Phương trình cần tìm là:
a^2-5/6a+1/6=0
Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=-\frac{5}{3}\\x_1x_2=-2\end{cases}}\)
Ta có \(S=y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)
\(=-\frac{5}{3}+\frac{\frac{-5}{3}}{-2}=-\frac{5}{6}\)
\(P=x_1x_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=-\frac{1}{2}\)
Khi đó y1 ; y2 là nghiệm của pt
\(Y^2-SY+P=0\)
\(\Leftrightarrow Y^2+\frac{5}{6}Y-\frac{1}{2}=0\)
\(a,\) \(x^2+5x-3m=0\left(1\right)\)
\(\Rightarrow\Delta=b^2-4ac=5^2-4.\left(-3m\right)=12m+25\)
\(Để\) phương trình \((1)\) có 2 nghiệm \(x_1,x_2\) ta có :
\(\Leftrightarrow\Delta\ge0\Rightarrow12m+25\ge0\)
\(\Rightarrow12m\ge-25\Rightarrow m\ge\dfrac{-25}{12}\)
1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)
\(1,3x^2+4x+1=0\)
Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)
Ta có :
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)
\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)
\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{S^2-2P-S}{P-S+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)
\(=\dfrac{11}{12}\)
Vậy \(C=\dfrac{11}{12}\)
=>căn 2x1=x2-1
=>2x1=x2^2-2x2+1
=>x2^2-2(x1+x2)+1=0
=>x2^2-2(2m+1)+1=0
=>x2^2=4m+2-1=4m+1
=>\(x_2=\pm\sqrt{4m+1}\)
=>\(x_1=2m+1\pm\sqrt{4m+1}\)
x1*x2=m^2-m
=>m^2-m=4m+1\(\pm2m+1\)
=>m^2-5m-1=\(\pm2m+1\)
TH1: m^2-5m-1=2m+1
=>m^2-7m-2=0
=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)
TH2: m^2-5m-1=-2m-1
=>m^2-3m=0
=>m=0; m=3
\(\Delta'=2-m\ge0\Rightarrow m\le2\)
Kết hợp Viet và điều kiện đề bài ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.\)
Mặt khác ta có \(x_1x_2=m-1\Rightarrow m-1=-35\Rightarrow m=-34\)
\(\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}\\y_1y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{x_1+x_2}{x_1x_2}\\y_1y_2=x_1x_2+\frac{1}{x_1x_2}+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-2-\frac{2}{m-1}=\frac{-2m}{m-1}\\y_1y_2=m-1+\frac{1}{m-1}+2=\frac{m^2}{m-1}\end{matrix}\right.\) (\(m\ne1\))
Theo Viet đảo, \(y_1;y_2\) là nghiệm của:
\(y^2+\frac{2m}{m-1}y+\frac{m^2}{m-1}\Leftrightarrow\left(m-1\right)y^2+2my+m^2=0\) \(\left(m\ne1\right)\)