K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

Cho nửa đường tròn đấy ạ . Mn giúp mk với , mk cảm ơn trước ạ 😊😊

10 tháng 5 2022

A B C D H E O

a/ Nối A với D ta có

\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)

=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp

b/ 

Xét tg vuông ACO có

\(\widehat{ACO}+\widehat{AOC}=90^o\)

Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)

Xét tứ giác nội tiếp AHDC có

 \(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)

\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)

Xét tam giác EOH và tg EBD có

\(\widehat{BED}\) chung

\(\widehat{AOC}=\widehat{EDB}\)

=> tg EOH đồng dạng với tg EDB (g.g.g)

\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)

 

 

 

10 tháng 5 2022

a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)

Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC

\(\Rightarrow AHDC\) là tứ giác nội tiếp

b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)

Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)

Xét \(\Delta EOH\) và \(\Delta EDB\) có:

\(\widehat{BED}\) chung

\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)

\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)

a: Xét (O) có
MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên MO là trung trực của AC

=>MO vuông góc AC tại E

góc ADB=1/2*sđ cung AB=90 độ

=>AD vuông góc MB

góc ADM=góc AEM=90 độ

=>AMDE nội tiếp

b: ΔMAB vuông tại A có AD là đường cao

nên MA^2=MD*MB

16 tháng 2 2021

O A B x C E D M

a, xét tg AEO và CEO có : EO chung

^AEO = ^CEO = 90

OA = OC = r

=> Tg AEO = tg CEO (ch-cgv)

=> ^AOE = ^COE 

xét tg MAO và tg MCO  có : Mo chung

OA = OC = r

=> tg MAO = tg MCO (cg-c)

=> ^MAO = ^MCO 

mà ^MAO = 90

=> ^MCO = 90 => OC _|_ MC

có C thuộc 1/2(o)

=> MC là tt của 1/2(o)

b, xét tứ giác MCOA có : ^MCO = ^MAO = 90

=> ^MCO + ^MAO = 180

=>MCOA nội tiếp

+ có D thuộc 1/(o) dk AB (gt) => ^ADB = 90 = ADM

có MEA = 90 do AC _|_ MO (Gt)

=> ^ADM = ^MEA = 90

=> MDEA nt