Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Đường thẳng d có 1 vtcp là \(\left(-2;3\right)\) hoặc \(\left(2;-3\right)\) cũng được
7.
Phương trình tham số của d: \(\left\{{}\begin{matrix}x=1-4t\\y=-4+9t\end{matrix}\right.\)
a) Xét phương trình tham số của d: \(\left\{ \begin{array}{l}x = - 1 - 3t\left( 1 \right)\\y = 2 + 2t\left( 2 \right)\end{array} \right.\).
Lấy \(\left( 1 \right) + \frac{3}{2}.\left( 2 \right) \Rightarrow x + \frac{3}{2}y = 2 \Rightarrow 2x + 3y - 4 = 0\)
Vậy phương trình tổng quát của đường thẳng d là: \(2x + 3y - 4 = 0\)
b) Xét hệ phương trình: \(\left\{ \begin{array}{l}2x + 3y - 4 = 0\\x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \frac{4}{3}\\x = 0\end{array} \right.\) . Vậy giao điểm của d với trục Oy là: \(A\left( {0;\frac{4}{3}} \right)\)
Xét hệ phương trình: \(\left\{ \begin{array}{l}2x + 3y - 4 = 0\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 0\\x = 2\end{array} \right.\) . Vậy giao điểm của d với trục Ox là: \(B\left( {2;0} \right)\)
c) Thay tọa độ điểm \(M\left( { - 7;{\rm{ }}5} \right)\)vào phương trình đường thẳng d ta có: \(2.\left( { - 7} \right) + 3.5 - 4 \ne 0\)
Vậy \(M\left( { - 7;{\rm{ }}5} \right)\)không thuộc đường thẳng d.
a: VTCP là (3;-5)
=>VTPT là (5;3)
b: 3t-2=14
=>3t=16
=>t=16/3
=>y=-7-5t=-7-80/3=-101/3
c: -5t-7=-12
=>5t+7=12
=>t=1
=>x=-2+3=1
d: H(14;-101/3); G(1;-12)
Tọa đọ trung điểm là:
\(\left\{{}\begin{matrix}x=\dfrac{14+1}{2}=\dfrac{15}{2}\\y=\dfrac{1}{2}\left(-\dfrac{101}{3}-12\right)=-\dfrac{137}{6}\end{matrix}\right.\)
Đáp án B
Đường thẳng ∆ có vecto chỉ phương u → (2; -3; 2)
Đường thẳng d đi qua M(4;3;1) và song song với đường thẳng ∆ nên có vecto chỉ phương là u → (2; -3; 2). Phương trình chính tắc của đường thẳng d là: