Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt
Phương trình AB:
\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)b.
Do d vuông góc delta nên d nhận (4;-3) là 1 vtpt
Phương trình d có dạng: \(4x-3y+c=0\)
\(d\left(B;d\right)=\dfrac{\left|4.5-3.1+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{1}{5}\)
\(\Rightarrow\left|c+17\right|=1\Rightarrow\left[{}\begin{matrix}c=-16\\c=-18\end{matrix}\right.\)
Có 2 đường thẳng d thỏa mãn: \(\left[{}\begin{matrix}4x-3y-16=0\\4x-3y-18=0\end{matrix}\right.\)
a.
\(\overrightarrow{AB}=\left(1;2\right)\Rightarrow\) đường thẳng AB nhận (2;-1) là 1 vtpt
Phương trình AB:
\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)
b.
d vuông góc \(\Delta\Rightarrow d\) nhận (4;-3) là 1 vtpt
Phương trình d có dạng: \(4x-3y+c=0\)
\(d\left(B;d\right)=\dfrac{\left|4.2-3.\left(-1\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{2}{5}\)
\(\Leftrightarrow\left|c+11\right|=2\Rightarrow\left[{}\begin{matrix}c=-9\\c=-13\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}4x-3y-13=0\\4x-3y-9=0\end{matrix}\right.\)
a: Phương trình tổng quát là:
3(x-1)+1(y+3)=0
=>3x-3+y+3=0
=>3x+y=0
b: vecto AB=(-1;4)
Phương trình tham số của AB là:
\(\left\{{}\begin{matrix}x=1-t\\y=-3+4t\end{matrix}\right.\)
c: \(d\left(B;d\right)=\dfrac{\left|0\cdot3+1\cdot1\right|}{\sqrt{3^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
a) Phương trình tổng quát của đường thẳng d đi qua điểm \(A\left( { - 3;2} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {2; - 3} \right)\) là: \(2\left( {x + 3} \right) - 3\left( {y - 2} \right) = 0 \Leftrightarrow 2x - 3y+12 = 0\)
Do vecto pháp tuyến là \(\overrightarrow n = (2; - \;3) \Rightarrow \overrightarrow u = (3;2)\)
Từ đó ta có phương trình tham số của đường thẳng d là:
\(\left\{ \begin{array}{l}x = - \;3 + 3t\\y = 2 + 2t\end{array} \right.\)\((t \in \mathbb{R})\)
b) Phương trình tham số của đường thẳng d đi qua điểm \(B\left( { - 2; - 5} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u = \left( { - 7;6} \right)\) là: \(\left\{ \begin{array}{l}x = - 2 - 7t\\y = - 5 + 6t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).
Từ đó ta có phương trình tổng quát của đường thẳng d là: \(\frac{{x + 2}}{{ - 7}} = \frac{{y + 5}}{6} \Leftrightarrow 6x + 7y + 47 = 0\).
c) Phương trình tổng quát của đường thẳng đi qua hai điểm \(C\left( {4;3} \right),D\left( {5;2} \right)\) là: \(\frac{{x - 4}}{{5 - 4}} = \frac{{y - 3}}{{2 - 3}} \Leftrightarrow x + y - 7 = 0\)
Từ đó ta có phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 7 - t\\y = t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) .
Giả sử đường thẳng ∆ song song với d : 3x- 4y+2= 0
Khi đó ; ∆ có phương trình là ∆ : 3x-4y +C= 0.
Lấy điểm M( -2 ; -1) thuộc d.
Do đó ; 2 đường thẳng thỏa mãn là:3x – 4y + 7 = 0 và 3x – 4y – 3 = 0
Chọn B
Đáp án C
Đường thẳng ( d) đi qua A( 2; 5) và nhận vecto n → ( a ; b ) làm VTPT có phương trình:
a( x- 2)+ b( y- 5) =0 hay ax+ by -2a- 5b= 0.
Khi đó:
Suy ra : - 24ab+ 7b2= 0
Nên b= 0 hoặc 7b= 24a
+ nếu b= 0; chọn a= 1 thì đường thẳng ( d) có phương trình là: x= 2.
+ Nếu 7b= 24a thì chọn a= 7 và b= 24 thì đường thẳng ( d) là 7x+ 24y – 134= 0
Đáp án: B
Phương trình đường thẳng AB đi qua A nhận (AB) làm vecto chỉ phương: