K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2021

Từ ay2=bx2 => \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

Vậy \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{1}{a+b}\Rightarrow\frac{x^{2000}}{a^{2000}}=\frac{1}{\left(a+b\right)^{1000}}\)

Và \(\frac{y^{2000}}{b^{1000}}=\frac{1}{\left(a+b\right)^{1000}}\Rightarrow\frac{x^{2000}}{a^{1000}}+\frac{y^{2000}}{b^{1000}}=\frac{2}{\left(a+b\right)^{1000}}\)

4 tháng 10 2018

a;b k cho dieu kien j ma ban ?

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{x^4}{a}+\frac{y^4}{b}\right)(a+b)\geq (x^2+y^2)^2=1\)

\(\Rightarrow \frac{x^4}{a}+\frac{y^4}{b}\geq \frac{1}{a+b}\)

Dấu "=" xảy ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow \frac{x^{2000}}{a^{1000}}+\frac{y^{2000}}{b^{1000}}=\left(\frac{x^2}{a}\right)^{1000}+\left(\frac{y^2}{b}\right)^{1000}\)

\(=\frac{1}{(a+b)^{1000}}+\frac{1}{(a+b)^{1000}}=\frac{2}{(a+b)^{1000}}\)

23 tháng 12 2016

x2+y2=1

(x2+y2)2=1

x4+y4+2x2y2=1

thay vào bt ta dc

x4/a+y4/b=x4+y4+2x2y2/a+b

x4b/ab+y4a/ab=x4+y4+2x2y2/a+b

x4b+y4a/a+b=x4+y4+2x2y2/a+b

nhân chéo lên rồi rút gọn ta dc

(x2b-y2a)2=0

x2b=y2a

23 tháng 12 2016

x4+yà bạn

25 tháng 1 2017

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)

\(\frac{yz+xz+xy}{xyz}=0\)

yz + xz + xy = 0

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)

25 tháng 1 2017

a) Từ giả thiết suy ra: xy + yz + zx = 0

Do đó:

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)

b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)

Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)

Suy ra điều phải chứng minh

4 tháng 10 2019

Ta co:

\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)

Dau '=' xay ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\)

Ta lai co:

\(\frac{x^6}{a^3}+\frac{y^6}{b^3}=\left(\frac{x^2}{a}\right)^3+\left(\frac{y^2}{b}\right)^3=2\left(\frac{x^2}{a}\right)^3\)

Ma \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow x^2=\frac{a}{a+b}\)

\(\Leftrightarrow\frac{x^2}{a}=\frac{1}{a+b}\)

\(\Leftrightarrow\left(\frac{x^2}{a}\right)^3=\frac{1}{\left(a+b\right)^3}\)

\(\Rightarrow\frac{x^6}{a^3}+\frac{y^6}{b^3}=\frac{2}{\left(a+b\right)^3}\)

14 tháng 12 2018

\(x^2+y^2=1\Leftrightarrow\frac{^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\)

Theo tính chất tỉ lệ thức

\(\frac{x^2+y^2}{a+b}=\frac{x^2}{a}=\frac{y^2}{b}\left(a;b\ne0\right)\)

\(\frac{x^{2012}}{a^{1006}}+\frac{y^{2012}}{b^{1006}}=\left(\frac{x^2}{a}\right)^{1006}+\left(\frac{y^2}{b}\right)^{1006}=2.\left(\frac{x^2+y^2}{a+b}\right)^{2006}=\frac{2}{\left(a+b\right)^{2006}}\left(đpcm\right)\)

9 tháng 11 2018

Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath tham khảo

4 tháng 1 2018

đây là bài tổng quát nè bạn, áp dụng bài này nhé ^_^

https://olm.vn/hoi-dap/question/1123004.html