K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

bn làm đc câu nào rồi

4 tháng 3 2019

làm được xong ý c rồi còn ý d nữa bn làm dc ko giúp mik vs

23 tháng 11 2023

a: Gọi giao điểm của MN với OA là H

Xét (O) có

AM,AN là tiếp tuyến

Do đó: AM=AN và AO là phân giác của \(\widehat{MAN}\)

AO là phân giác của góc MAN

=>\(\widehat{MAO}=\widehat{NAO}\)

OM=ON

=>O nằm trên đường trung trực của MN(1)

AM=AN

=>A nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra AO là đường trung trực của MN

=>AO vuông góc với MN tại trung điểm của MN

=>AO vuông góc với MN tại H và H là trung điểm của MN

ΔAMO vuông tại M

=>\(MA^2+MO^2=OA^2\)

=>\(MA^2+3^2=5^2\)

=>\(MA^2=5^2-3^2=16\)

=>MA=4(cm)

Chu vi tứ giác OMAN là:

OM+MA+AN+ON

=3+4+4+3

=6+8=14(cm)

Xét ΔOMA vuông tại M có MH là đường cao

nên \(MH\cdot OA=MO\cdot MA\)

=>\(MH\cdot5=3\cdot4=12\)

=>MH=2,4(cm)

H là trung điểm của MN

=>MN=2*MH

=>MN=2*2,4

=>MN=4,8(cm)

b: SO\(\perp\)OM

MA\(\perp\)OM

Do đó: SO//MA

=>\(\widehat{SOA}=\widehat{MAO}\)

mà \(\widehat{MAO}=\widehat{NAO}\)(cmt)

nên \(\widehat{SOA}=\widehat{MAO}=\widehat{NAO}\)

=>\(\widehat{SOA}=\widehat{SAO}\)

=>SA=SO

7 tháng 6 2021

a) Ta có: \(\angle ABO+\angle ACO=90+90=180\Rightarrow ABOC\) nội tiếp 

Lại có: \(\angle AIO=\angle ABO=90\Rightarrow ABIO\) nội tiếp

\(\Rightarrow A,B,I,O,C\) cùng thuộc 1 đường tròn

\(\Rightarrow ABIC\) nội tiếp 

\(\Rightarrow\angle AIB=\angle ACB=\angle ABC\) (\(\Delta ABC\) cân tại A) \(=\angle AIC\)

\(\Rightarrow IA\) là phân giác \(\angle CIB\)

b) Xét \(\Delta ABM\) và \(\Delta ANB:\) Ta có: \(\left\{{}\begin{matrix}\angle ABM=\angle ANB\\\angle NABchung\end{matrix}\right.\)

\(\Rightarrow\Delta ABM\sim\Delta ANB\left(g-g\right)\Rightarrow\dfrac{AB}{AN}=\dfrac{AM}{AB}\Rightarrow AB^2=AM.AN\)

mà \(AB^2=AH.AO\) (hệ thức lượng) \(\Rightarrow AH.AO=AM.AN\)

\(\Rightarrow\dfrac{AH}{AM}=\dfrac{AN}{AO}\)

Xét \(\Delta AHM\) và \(\Delta ANO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AH}{AM}=\dfrac{AN}{AO}\\\angle NAOchung\end{matrix}\right.\)

\(\Rightarrow\Delta AHM\sim\Delta ANO\left(c-g-c\right)\Rightarrow\angle AHM=\angle ANO\)

\(\Rightarrow MHON\) nội tiếp \(\Rightarrow H\in\left(OMN\right)\)undefined

27 tháng 12 2019

a) Ta có AB và AC là tiếp tuyến tại A và B của (O)

=> AB⊥OB và AC⊥OC

Xét ΔAOB và ΔAOC có 

       OB=OC(=R)

Góc ABO=Góc ACO=90

       OA chung

=> ΔAOB=ΔAOC

=> AB=AC

=> A∈trung trực của BC

Có OB=OC(=R)

=>O∈trung trực của BC

=> OA là đường trung trực của BC 

Mà H là trung điểm của BC

=>A;H;O thẳng hàng

Xét ΔABO vuông tại B

=>A;B:O cùng thuộc đường tròn đường kính OA

Xét ΔACO vuông tại C

=>A;C;O cùng thuộc đuường tròn đường kính OA

=>A;B;C;O cùng thuộc đường tròn đường kính OA

b) Xét (O) có BD là đường kính

=>ΔBCD vuông tại C

=> CD⊥BC

Mà OA⊥BC

=>OA//CD

=> Góc AOC=Góc OCD

Xét ΔOCD có OC=OD

=> ΔOCD cân tại O

=> Góc OCD=Góc ODC

=> Góc ODC=Góc AOC

Xét ΔAOC và ΔCDK có 

Góc AOC=Góc CDK

Góc ACO=Góc CKD=90

=>ΔAOC∞ΔCDK

=>AOCDAOCD= ACCKACCK 

=>AC.CD=CK.OA

d) Xét ΔOCK vuông tại K

=> ΔOCK nội tiếp đường tròn đường kính OC

Xét ΔOHC vuông tại H

=> ΔOHC nội tiếp đường tròn đươngf kính OC

=> Tứ giác OKCH nội tiếp đường tròn đường kính OC

=> Góc CHK=Góc COD

Có góc BOA=Góc BCK( cùng phụ góc CBD)

Góc CHI+góc BCK=Góc BOA+ góc BAO

=>Góc CHI=Góc BAO

Mà Góc BAO=Góc CBD( cùng phụ góc ABC)

=> Góc CHI=Góc CBD

=> HI//BD

Xét ΔBCD có HI//BD và H là trung điểm của BC

=> HI là đường trung bình của ΔBCD

=> I là trung điểm của CK

29 tháng 4 2020

hay ghê

4 tháng 5 2020

B C A O O' P M N P' H 1 2 1

4 tháng 5 2020

a) Ta có : \(\widehat{MOA}=\widehat{O_1}'\left(=180^o-2\widehat{A_1}\right)\)

\(\Rightarrow\)O'N // OM

Gọi P là giao điểm của MN và OO'

Ta có : \(\frac{O'P}{OP}=\frac{O'N}{OM}=\frac{R'}{R}\)

gọi P' là giao điểm của BC và OO',ta có :

\(\frac{O'P'}{OP'}=\frac{O'C}{OB}=\frac{R'}{R}\)

Suy ra \(P'\equiv P\)

b) gọi H là hình chiếu của O' trên OM

tứ giác MNO'O là hình thang nên \(S=\frac{\left(OM+O'N\right)O'H}{2}\)

\(S=\frac{R+R'}{2}.O'H\le\frac{R+R'}{2}.OO'=\frac{\left(R+R'\right)^2}{2}\)

Dấu "=" xảy ra khi \(H\equiv O\Leftrightarrow OM\perp OO'\)

Vậy ...

a: góc AMO+góc ANO=180 độ

=>AMON nội tiếp

b: ΔOBC cân tại O có OI là trung tuyến

nên OI vuông góc BC

Xét (O) có

AM,AN là tiếp tuyến

=>AM=AN

mà OM=ON

nên OA là trung trực của MN

=>OA vuông góc MN tại H

Xét ΔAHK vuông tại H và ΔAIO vuông tại I có

góc HAK chung

=>ΔAHK đồng dạng vớiΔAIO

=>AH/AI=AK/AO

=>AH*AO=AK*AI=AB*AC