K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2023

a: Gọi giao điểm của MN với OA là H

Xét (O) có

AM,AN là tiếp tuyến

Do đó: AM=AN và AO là phân giác của \(\widehat{MAN}\)

AO là phân giác của góc MAN

=>\(\widehat{MAO}=\widehat{NAO}\)

OM=ON

=>O nằm trên đường trung trực của MN(1)

AM=AN

=>A nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra AO là đường trung trực của MN

=>AO vuông góc với MN tại trung điểm của MN

=>AO vuông góc với MN tại H và H là trung điểm của MN

ΔAMO vuông tại M

=>\(MA^2+MO^2=OA^2\)

=>\(MA^2+3^2=5^2\)

=>\(MA^2=5^2-3^2=16\)

=>MA=4(cm)

Chu vi tứ giác OMAN là:

OM+MA+AN+ON

=3+4+4+3

=6+8=14(cm)

Xét ΔOMA vuông tại M có MH là đường cao

nên \(MH\cdot OA=MO\cdot MA\)

=>\(MH\cdot5=3\cdot4=12\)

=>MH=2,4(cm)

H là trung điểm của MN

=>MN=2*MH

=>MN=2*2,4

=>MN=4,8(cm)

b: SO\(\perp\)OM

MA\(\perp\)OM

Do đó: SO//MA

=>\(\widehat{SOA}=\widehat{MAO}\)

mà \(\widehat{MAO}=\widehat{NAO}\)(cmt)

nên \(\widehat{SOA}=\widehat{MAO}=\widehat{NAO}\)

=>\(\widehat{SOA}=\widehat{SAO}\)

=>SA=SO

16 tháng 12 2016

deo can

16 tháng 6 2017

mọi người zải câu này nhanh nhanh zùm mk vs

19 tháng 12 2017

Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé.

a: góc ONM+góc OPM=180 độ

=>ONMP nội tiếp

b: ONMP nội tiếp

=>góc NMO=góc NPO

c: Xét ΔMNA và ΔMBN có

góc MNA=góc MBN

góc NMA chung

=>ΔMNA đồng dạng với ΔMBN

=>MN/MB=MA/MN

=>MN^2=MB*MA

a: góc MNO+góc MPO=90+90=180 độ

=>MNOP nội tiếp

b: MNOP nội tiếp

=>góc NMO=góc NPO

22 tháng 9 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Ta có: ∠(ABN ) = 90 0 (B thuộc đường tròn đường kính AN)

⇒ BN // MO ( cùng vuông góc với AB)

Do đó:

∠(AOM) = ∠(ANB) (đồng vị))

∠(AOM) = ∠(BOM) (OM là phân giác ∠(AOB))

⇒ ∠(ANB) = ∠(BOM)

Xét ΔBHN và ΔMBO có:

∠(BHN) = ∠(MBO ) = 90 0

∠(ANB) = ∠(BOM)

⇒ ΔBHN ∼ ΔMBO (g.g)

Đề kiểm tra Toán 9 | Đề thi Toán 9

Hay MB. BN = BH. MO

1 tháng 3 2022

a, Ta có SA = SB (tc tiếp tuyến cắt nhau ) 

OA = OB = R

Vậy OS là đường trung trực đoạn AB 

=> SO vuông AB tại H

b, Vì I là trung điểm 

=> OI vuông NS 

Xét tứ giác IHSE ta có ^EHS = ^EIS = 900

mà 2 góc này kề, cùng nhìn cạnh ES

Vậy tứ giác IHSE nt 1 đường tròn 

=> ^ESH = ^HIO ( góc ngoài đỉnh I ) 

Xét tam giác OIH và tam giác OSE có 

^HIO = ^OSE (cmt) 

^O_ chung 

Vậy tam giác OIH ~ tam giác OSE (g.g) 

\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)

Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có 

\(OA^2=OH.OS\)(hệ thức lượng) 

\(\Rightarrow OA^2=R^2=OI.OE\)