K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

Bài 2 : 

\(\hept{\begin{cases}3x+2y=11\left(1\right)\\x+2y=5\left(2\right)\end{cases}}\)

Lấy phương trình (1) - phương trình (2) ta được : 

\(2x=6\Leftrightarrow x=3\)

Thay x = 3 vào phương trình (2) ta được : 

\(3+2y=5\Leftrightarrow2y=2\Leftrightarrow y=1\)

Vậy \(\left(x;y\right)=\left(3;1\right)\)

30 tháng 6 2021

1 , a = 5 , b = -7

2 , x = 3 , y = 1

10 tháng 4 2021

a, \(\hept{\begin{cases}4x-y=7\\x+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=4x-7\left(1\right)\\x+3y=5\left(2\right)\end{cases}}\)

Thế (1) vào (2) ta được : \(x+3\left(4x-7\right)=5\Leftrightarrow x+12x-21=5\)

\(\Leftrightarrow13x=26\Leftrightarrow x=2\)

Theo (1) ta có : \(y=8-7=1\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

8 tháng 4 2021

Trả lời:

a. xác định a,b:

 vì đồ thị hàm số y=ax+b // đường y=-1/2x+2020

=> a=-1/2

Đồ thị cắt trục hoành tại điểm có tọa độ(-5,0), thay vào ta có:

  0= -1/2.-5 +b => b=-5/2

Đường thẳng d là: y=-1/2 x-5/2

Vì đường thẳng ( d ) : y = ax +b song song với đường thẳng

\(y=-\frac{1}{2}x+2020\Leftrightarrow\)\(\hept{\begin{cases}a=-\frac{1}{2}\\be2020\end{cases}}\)

khi đó phương trình đường thẳng ( d ) có dạng ( d ) :\(y=-\frac{1}{2}x+b,\)với \(be2020\)

Vì ( d ) cắt trục hoành tại điểm có hoành độ bằng -5 nên đường thẳng  ( d ) đi qua điểm ( - 5 ; 0 )

thay tọa độ điểm ( - 5 ; 0 )và phương trình đường thẳng ( d ) ta có :

\(0=-\frac{1}{2}\times\left(-5\right)+b\)

\(\Leftrightarrow0=\frac{5}{2}+b\)

\(\Leftrightarrow b=-\frac{5}{2}\)thỏa mãn

Vậy \(a=-\frac{1}{2}\)và \(b=-\frac{5}{2}\)

bình chọn em với

1: (d)//(d') nên (d): y=2x+b

Thay x=-2 và y=1 vào (d), ta được:

b-4=1

=>b=5

2: x+2y=1 và x-y=4

=>3y=-3 và x-y=4

=>y=-1 và x=4+y=3

9 tháng 5 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2x-m+2=0\)

\(\Delta'=1-\left(-m+2\right)=m+3\)

Để (P) cắt (d) tại 2 điểm pb khi m > -3 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m+2\end{matrix}\right.\)

Ta có \(\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

Thay vào ta được \(4+4\left(m-2\right)=4\Leftrightarrow4m-4=4\Leftrightarrow m=2\)(tm) 

9 tháng 5 2022

\(\left\{{}\begin{matrix}\dfrac{9}{x+1}-6y=-3\\\dfrac{10}{x+1}+6y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{19}{x+1}=-19\\y=\dfrac{\dfrac{3}{x+1}+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

a: Để hai đường thẳng cắt nhau trên trục tung thì \(\left\{{}\begin{matrix}m^2-2=7\\m-1< >2\end{matrix}\right.\Leftrightarrow m=-3\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}10x-2y=6\\3x+2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=13\\5x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

19 tháng 3 2023

Để đường thẳng: y=ax+b song song với đường thẳng: y=5x+6

\(\Rightarrow a=5;b\ne6\)

Vì đường thẳng: y=ax+b đi qua điểm A(2;3)

=> 2a+b=3\(\Rightarrow10+b=3\)=>b=-7(TM)

Vậy (a;b)=(5;-7)

15 tháng 12 2016

Ta biết đổi lại thành \(y\left(2m-2\right)=\left(m+3\right)-\left(m-1\right)x\)

a/ Để đths song song với (d) : \(y=\frac{3x-1}{2}=\frac{3}{2}x-\frac{1}{2}\)thì \(\begin{cases}2m-2\ne0\\m+3\ne-\frac{1}{2}\\-\left(m-1\right)=\frac{3}{2}\end{cases}\) \(\Leftrightarrow m=-\frac{1}{2}\) (thỏa mãn)

Còn lại tương tự.

b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)

Vì đths đi qua N nên \(\left(m-1\right)x_0+\left(2m-2\right)y_0=m+3\Leftrightarrow m\left(x_0+2y_0-1\right)-\left(x_0+2y_0+3\right)=0\)

Để N là điểm cố định thỏa mãn thì

\(\begin{cases}x_0+2y_0-1=0\\x_0+2y_0+3=0\end{cases}\) . Hệ này vô nghiệm.

Vậy không có điểm cố định.