K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

O A C B D

Cm: a) Xét t/giác OAD và t/giác OCB

có: OA = OC (gt)

 \(\widehat{AOD}=\widehat{COB}\) (đối đỉnh)

 OD = OB (gt)

=> t/giác OAD = t/giác OCD (c.g.c)

=> AD = BC (2 cạnh t/ứng)

Tương tự, xét t/giác AOB và t/giác COD 

có: OA = OC (gt)

 \(\widehat{AOB}=\widehat{COD}\) (Đối đỉnh)

  OB = OD (gt)

=> t/giác AOB = t/giác COD (c.g.c)

=> AB = DC (2 cạnh t/ứng)

b) Xét t/giác ADC và t/giác  CAB

có:  AC : chung

 AD = BC (cmt)

 AB = DC (cmt)

=> t/giác ADC = t/giác CAB (c.c.c)

=> \(\widehat{CDA}=\widehat{CBA}\)(2 góc t/ứng)

Xét t/giác ADB và t/giác CBD

có: AB = CD (cmt)

 AD = CB (cmt)

 BD  : chung

=> t/giác ADB = t/giác CBD (c.c.c)

=> \(\widehat{BAD}=\widehat{BCD}\)(2 góc t/ứng)

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0
8 tháng 3 2022

mk lớp 6 

12 tháng 1 2017
bài toán này cũng dễ mà,nó ra là ... thôi bạn tự là đ
6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

6 tháng 2 2020

A C B D E O M N I

∆ABC (^A = 90o)

=> ^ABC + ^ACB = 90o (t/c)

Mà ^B1 = ^B2 = ^ABC/2 ( BD là p/g của ^ABC)

      ^C1 = ^C2 = ^ACB/2 ( CE là p/g của ^ACB)

=> ^B2 + ^C1 = \(\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{90^o}{2}=45^o\)

+Xét ∆BOC có : ^B2 + ^C1 + ^BOC = 180o (đlý)

Mà ^B2 + C1 = 45o

=> ^BOC = 180o - 45o = 135o

b) Xét ∆ABD, ∆MBD có :

BA = BM (gt)

^B1 = ^B2 (câu a)

BD chung

Do đó : ∆ABD = ∆MBD (c-g-c)

=> ^A = ^BMD (góc tương ứng)

Mà ^A = 90o => ^BMD = 90o

=> DM _|_ BC

Cmtt ta cũng có EN _|_ BC

=> DM // EN

c) +Xét ∆ABI , ∆MBI có :

B1 = B2

BI chung

BA = BM (gt)

Do đó : ∆ABI = ∆MBI (c-g-c)

=> AI = MI (2 cạnh tương ứng)

Xét ∆AIM có AI = MI (cmt) => ∆AIM cân

5 tháng 5 2022
 

Trong tam giác ABC có:

∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o

Mà BI và CI lâ các tia phân giác nên

∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )

Suy ra ∠(IBC) + ∠(ICB) = 50o

Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o.