Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có: BH\(\perp\)AC
CK\(\perp\)AC
Do đó: BH//CK
Ta có: CH\(\perp\)AB
BK\(\perp\)BA
Do đó: CH//BK
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
b: Ta có: BHCKlà hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
=>H,M,K thẳng hàng
a, Ta có:
- BH là đường cao của tam giác ABC, nên BH vuông góc với AC.
- CK là đường cao của tam giác ABC, nên CK vuông góc với AB.
- Vì BH và CK đều vuông góc với hai cạnh AB và AC của tam giác ABC, nên BHCK là hình bình hành.
b, Gọi M là trung điểm của BC. Ta cần chứng minh CM, HM và KM thẳng hàng.
- Vì M là trung điểm của BC, nên BM = MC.
- Ta có BHCK là hình bình hành, nên BH = CK.
- Vì BH và CK là đường cao của tam giác ABC, nên BH = 2HM và CK = 2KM.
- Từ đó, ta có BM = MC = HM = KM.
- Vì BM = MC và HM = KM, nên CM, HM và KM thẳng hàng.
Vậy, ta đã chứng minh được CM, HM và KM thẳng hàng.
1: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của đường chéo BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M
1: Xét tứ giác BHCD có
CH//BD
BH//CD
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M
a: Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó: BHCD là hình bình hành
Suy ra: \(\widehat{BHC}=\widehat{BDC}\)
a: Xet ΔADB vuông tại D va ΔAEC vuông tại E có
góc BAD chung
=>ΔADB đồg dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC và AD*AC=AE*AB
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
Bài 2:
a: Ta có: ΔAEH vuông tại E
mà EI là đường trung tuyến
nên IE=AH/2(1)
Ta có: ΔADH vuông tại D
mà DI là đường trung tuyến
nên DI=AH/2(2)
Từ (1) và (2) suy ra IE=ID
b: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>ME=MD
hay M nằm trên đường trung trực của ED(1)
Ta có: IE=ID
nên I nằm trên đường trung trực của ED(2)
Từ (1) và (2) suy ra IM là đường trung trực của ED
hay D đối xứng với E qua IM