Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
nên BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔDAH có DI/DH=DO/DA
nen Io//AH và IO=AH/2
=>AH=2OI
a: Xét (O) có
ΔABM nội tiếp
AM là đường kính
Do đó: ΔABM vuông tại B
=>BM\(\perp\)AB
mà CH\(\perp\)AB
nên CH//BM
Xét (O) có
ΔACM nội tiếp
AM là đường kính
Do đó: ΔACM vuông tại C
=>AC\(\perp\)CM
mà BH\(\perp\)AC
nên BH//CM
Xét tứ giác BHCM có
BH//CM
BM//CH
Do đó: BHCM là hình bình hành
b:
Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại D
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AMC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AMC}\)
Ta có: \(\widehat{ABC}+\widehat{BAN}=90^0\)(ΔADB vuông tại D)
\(\widehat{AMC}+\widehat{MAC}=90^0\)(ΔACM vuông tại C)
mà \(\widehat{ABC}=\widehat{AMC}\)
nên \(\widehat{BAN}=\widehat{MAC}\)
Xét (O) có
ΔANM nội tiếp
AM là đường kính
Do đó: ΔANM vuông tại N
=>AN\(\perp\)NM
mà AN\(\perp\)BC
nên BC//NM
Ta có: \(\widehat{CHD}=\widehat{ABC}\)(=90 độ-góc FCB)
\(\widehat{ABC}=\widehat{ANC}\)
Do đó: \(\widehat{CHD}=\widehat{ANC}\)
=>ΔCHN cân tại C
=>CH=CN
mà CH=BM
nên BM=CN
Xét tứ giác BCMN có BC//MN
nên BCMN là hình thang
Hình thang BCMN có BM=CN
nên BCMN là hình thang cân
a: Xét tứ giác BDEA có
góc BDA=góc BEA=90 độ
=>BDEA là tứ giác nội tiếp
b: Kẻ tiếp tuyến Ax
=>góc xAC=góc ABC
mà góc ABC=góc AEF(=180 độ-góc FEC)
nên góc xAC=góc AEF
=>Ax//FE
=>FE vuông góc OA
Xét (O) có
ΔACA' nội tiếp
AA' là đường kính
=>ΔACA' vuông tại C
Xét tứ giác A'CEM có
góc EMA'+góc ECA'=180 độ
=>A'CEM là tứ giác nội tiếp
a: góc AEH+góc ADH=180 độ
=>AEHD nội tiêp
góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
b: góc ABI=góc ACK(=90 độ-góc BAC)
góc ABI=1/2*sđ cung AI
góc ACK=1/2*sđ cung AK
=>sđ cung AI=sđ cung AK
=>AI=AK
đề bài đâu có I bạn ơi
a,
b, AK là đường kính=>tam giác ACK nội tiếp(O)
=>\(KC\perp AC\)
mà BE là đường cao=>\(BH\perp AC=>BH//KC\left(1\right)\)
làm tương tự \(=>CH//BK\left(2\right)\)
(1)(2)=>BHCK là hinh bình hành
còn điểm I ấy chắc là trung điểm của BC chăng?(đề chắc thiếu)
=>I cũng là trung điểm HK=>H,I,K thẳng hàng