K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

Đang học Bunyakovsky đúng hong :D

1)

\(S=\sqrt{a^2+4ab+b^2}+\sqrt{b^2+4bc+c^2}+\sqrt{c^2+4ac+a^2}\)

\(S^2=\left(\sqrt{a^2+4ab+b^2}+\sqrt{b^2+4bc+c^2}+\sqrt{c^2+4ac+a^2}\right)^2\)

\(\le\left(1^2+1^2+1^2\right)\left(a^2+4ab+b^2+b^2+4bc+c^2+c^2+4ac+a^2\right)\)

\(=3.2\left(a^2+b^2+c^2+2ab+2bc+2ac\right)=6.\left(a+b+c\right)^2=6.6^2=216\)

\(\Leftrightarrow S\le6\sqrt{6}."="\Leftrightarrow a=b=c=2\)

2) \(M^2=\left(\sqrt{x+1}+\sqrt{y+1}\right)^2\le\left(1^2+1^2\right)\left(x+1+y+1\right)=2.8=16\)

\(M\le4."="\Leftrightarrow x=y=3\)

3)

\(S=ab+2\left(a+b\right)\le\dfrac{\left(a+b\right)^2}{4}+\dfrac{8\left(a+b\right)}{4}\)

\(=\dfrac{\left(a+b\right)^2+8\left(a+b\right)}{4}\)

\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\Leftrightarrow a+b\le\sqrt{2}\)

\(\dfrac{\left(a+b\right)^2+8\left(a+b\right)}{4}\le\dfrac{2+8\sqrt{2}}{4}=\dfrac{1+4\sqrt{2}}{2}\)

\(S\le\dfrac{1+4\sqrt{2}}{2}."="\Leftrightarrow a=b=\dfrac{1}{\sqrt{2}}\)

29 tháng 11 2021

\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)

\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)

\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

29 tháng 11 2021

\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)

31 tháng 3 2018

Vì \(a;b;c>0\Rightarrow2ab\le\frac{\left(a+b\right)^2}{2}\) thay vào \(\sqrt{a^2+4ab+b^2}\)ta có:

\(\sqrt{a^2+4ab+b^2}=\sqrt{\left(a+b\right)^2+2ab}\)

\(\le\sqrt{\left(a+b\right)^2+\frac{\left(a+b\right)^2}{2}}=\sqrt{\frac{3\left(a+b\right)^2}{2}}=\left(a+b\right).\sqrt{\frac{3}{2}}\)

Tương tự: \(\sqrt{b^2+4bc+c^2}\le\sqrt{\frac{3}{2}}.\left(b+c\right)\)

\(\sqrt{c^2+4ca+a^2}\le\sqrt{\frac{3}{2}}.\left(c+a\right)\)

\(\Rightarrow P\le\sqrt{\frac{3}{2}}.\left(a+b\right)+\sqrt{\frac{3}{2}}.\left(b+c\right)+\sqrt{\frac{3}{2}}.\left(c+a\right)\)

        \(\le\sqrt{\frac{3}{2}}.\left(2a+2b+2c\right)=\sqrt{\frac{3}{2}}.6=\sqrt{216}=6\sqrt{6}\)Vì a+b+c=6

Dấu = xảy ra khi a=b=c=2

Vây ......

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

\(\dfrac{1}{\sqrt{a^2-ab+b^2}}< =\dfrac{1}{\sqrt{2ab-ab}}=\dfrac{1}{\sqrt{ab}}\)

\(\sqrt{\dfrac{1}{b^2-bc+c^2}}< =\dfrac{1}{\sqrt{bc}};\sqrt{\dfrac{1}{c^2-ac+c^2}}< =\dfrac{1}{\sqrt{ac}}\)

=>P<=1/a+1/b+1/c=3

Dấu = xảy ra khi a=b=c=1

20 tháng 8 2020

:3 em từ olm sang đây có gì sai thì chỉ bảo

Áp dụng bất đẳng thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)

ta có \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)Ta lại có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)

Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)

\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)

Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)

Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)

Vì a,b,c > 0 nên 0<abc \(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)

Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)

\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)

Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)

\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)

Dấu ''='' xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 2 bạn xem viết có sai đề không?

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)