Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
Áp dụng BĐT Cauchy cho 2 số dương:
4ac=2.b.2c≤2(b+2c2)2≤2(a+b+2c2)2=2.(12)2=12
⇒−4bc≥−12
⇒K=ab+4ac−4bc≥−4bc≥−12
\(c\ge\sqrt{ab}\Leftrightarrow\dfrac{c}{a}.\dfrac{c}{b}\ge1\)
BĐT cần chứng minh tương đương:
\(\dfrac{\left(c+a\right)^2}{c^2+a^2}\ge\dfrac{\left(c+b\right)^2}{c^2+b^2}\Leftrightarrow\dfrac{\left(\dfrac{c}{a}+1\right)^2}{\left(\dfrac{c}{a}\right)^2+1}\ge\dfrac{\left(\dfrac{c}{b}+1\right)^2}{\left(\dfrac{c}{b}\right)^2+1}\)
Đặt \(\left(\dfrac{c}{a};\dfrac{c}{b}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}xy\ge1\\y>x\Rightarrow y-x>0\end{matrix}\right.\) (1)
BĐT cần c/m trở thành: \(\dfrac{\left(x+1\right)^2}{x^2+1}\ge\dfrac{\left(y+1\right)^2}{y^2+1}\Leftrightarrow\dfrac{x}{x^2+1}\ge\dfrac{y}{y^2+1}\)
\(\Leftrightarrow xy^2+x\ge x^2y+y\Leftrightarrow xy\left(y-x\right)-\left(y-x\right)\ge0\)
\(\Leftrightarrow\left(xy-1\right)\left(y-x\right)\ge0\) luôn đúng theo (1)
Vậy BĐT đã cho được c/m
Dấu "=" xảy ra khi \(xy=1\) hay \(c=\sqrt{ab}\)
Giai
TS + 2 và - 2/(a-b)
SD BĐT Cô si => đpcm
"=" a = (\(\frac{\sqrt{3}+1}{\sqrt{2}}\)) ; b = \(\frac{\sqrt{3}\text{-}1}{\sqrt{2}}\) và ngược lại
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
\(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\dfrac{1}{\sqrt{a^2-ab+b^2}}\le\dfrac{1}{\sqrt{\dfrac{1}{4}\left(a+b\right)^2}}=\dfrac{2}{a+b}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Tương tự:
\(\dfrac{1}{\sqrt{b^2-bc+c^2}}\le\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\le\dfrac{1}{2}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cộng vế:
\(P\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Hehe
1) Áp dụng hằng bất đẳng thức số 1: (a-b)^2>=0 với mọi a,b
=> a^2- 2ab+ b^2>= 0 với mọi a,b
=> a^2+2ab+ b^2>= 4ab với a,b>0
=> (a+b)^2> 4ab với a,b>0
=> a+b>= \(2\sqrt{ab}\)
Dấu = xảy ra <=> a-b=0 <=> a= b
Cái này là bất đẳng thức cô- si. lớp 8 được học rồi mà :D
2) Chắc thiếu đề :D