Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) a chia 2 dư 1 nên a+1 chia hết cho 2 hay a+11 cũng chia hết cho 2
a chia 3 dư 1 nên a+2 chia hết cho 3 hay a+2+9=a+11 cũng chia hết cho 3
a chia 5 dư 4 nên a+1 chia hết cho 5, hay a+1+10=a+11 cũng chia hết cho 5
a chia 7 dư 3 nên a+4 chia hết cho 7 hay a+4+7=a+11 chia hết cho 7
Suy ra a+11 cùng chia hết cho 2; 3; 5; 7
a là số nhỏ nhất nên a+11 cũng là số nhỏ nhất
Do đó, a+11=BCNN (2;3;5;7)
Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau
Do vậy, a+11=2.3.5.7=210
Vậy a=199
B)Gọi UCLN của 7n+10 và 5n+7 là d
7n+10 chia hết cho d => 5(7n+10) chia hết cho d
hay 35n+50 chia hết cho d
5n+7 chia hết cho d=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d
1 chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
Vì a chia cho 2 dư 1 nên a là số lẻ.
Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6.
Do đó a phải có tận cùng là 1.
- Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài).
- Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9).
Vì 171 : 7 = 24 dư 3 nên a = 171.
Vậy số phải tìm nhỏ nhất thỏa mãn điều kiện của đề bài là 171.
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
1.
gọi UCLN(n+1;3n+4) là d
ta có :
n+1 chia hết cho d=>3(n+1) chia hết cho d =>3n+3 chia hết cho d
=>3n+4 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+1;3n+4)=1
=>n+1;3n+4 là hai số nguyên tố cùng nhau
a) \(64a=80b=96c\)
\(\Leftrightarrow4a=5b=6c\) (Chia các vế cho 16)
Đặt \(m=4a=5b=6c\) thì m là số tự nhiên và m chia hết cho 4, 5, 6. Để a, b, c nhỏ nhất thì m cũng nhỏ nhất.
=> m là BCNN(4;5;6)
\(4=2^2\)
\(5=5\)
\(6=2.3\)
=> \(BCNN\left(4;5;6\right)=2^2.3.5=60\)
=> m = 60 = 4a = 5b = 6c
=> a = 15
b = 12
c = 10
b) Gọi d = ƯC(7n + 10, 5n +7)
=> 7n + 10 chia hết cho d
5n + 7 chia hết cho d
=> 5(7n +10) - 7(5n + 7) chia hết cho d
=> 35n + 50 - 35n - 49 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là nguyên tố cùng nhau.
Gọi d là ƯCLN của 11a + 2b và 18a + 5b
Khi đó : 11a + 2b chia hết cho d và 18a + 5b chai hết cho d
<=> 18(11a + 2b) chia hết cho d và 11(18a + 5b) chia hết cho d
<=> 198a + 36b chia hết cho d và 198a + 55b chia hết cho d
=> (198a + 55b) - (198a + 36b) = 19b chia hết cho d
=> 19 chia hết cho d
=> d = 1
Vậy 11a + 2b và 18a + 5b nguyên tố cũng nhau
. a) Cho (a + 5b) ⁝ 7. Chứng tỏ rằng (10a + b) ⁝ 7
-Ta có : (a+5b) \(⋮7\)
\(\Rightarrow10.\left(a+5b\right)⋮7\)
\(\Rightarrow10a+50b⋮7\)
\(\Rightarrow\left(10a+b\right)+49b⋮7\)
\(49b⋮7\Rightarrow\left(10a+b\right)⋮7\left(đpcm\right)\)
\((10a + b)⁝7 \)
\(\implies 5(10a + b)\vdots 7\)
\(\implies 5.10a + 5b\vdots 7\)
\(\implies 50a + 5b\vdots 7\)
\(\implies 49a + a + 5b\vdots 7\)
\(\implies 49a + (a + 5b)\vdots 7\)
\(49a\vdots 7 \implies (a +5b) \vdots 7(đpcm)\)
Cám ơn bạnミ★Hoa﹏❣Anh﹏❣Đào﹏❣★彡, mong bạn giải tiếp các câu còn lại nhé.